These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 1100608)
21. The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems. Grenier FC; Waygood EB; Saier MH J Cell Biochem; 1986; 31(2):97-105. PubMed ID: 3015992 [TBL] [Abstract][Full Text] [Related]
22. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. Nobelmann B; Lengeler JW J Bacteriol; 1996 Dec; 178(23):6790-5. PubMed ID: 8955298 [TBL] [Abstract][Full Text] [Related]
23. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
25. The phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. Lengeler J; Auburger AM; Mayer R; Pecher A Mol Gen Genet; 1981; 183(1):163-70. PubMed ID: 7035817 [TBL] [Abstract][Full Text] [Related]
26. Binding of the substrate analogue perseitol to phosphorylated and unphosphorylated enzyme IImtl of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Lolkema JS; Wartna ES; Robillard GT Biochemistry; 1993 Jun; 32(22):5848-54. PubMed ID: 8504105 [TBL] [Abstract][Full Text] [Related]
27. Enzymes related to fructose utilization in Pseudomonas cepacia. Allenza P; Lee YN; Lessie TG J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243 [TBL] [Abstract][Full Text] [Related]
28. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:mannitol phosphotransferase system. Mueller EG; Khandekar SS; Knowles JR; Jacobson GR Biochemistry; 1990 Jul; 29(29):6892-6. PubMed ID: 2118803 [TBL] [Abstract][Full Text] [Related]
29. Mechanistic coupling of transport and phosphorylation activity by enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Lolkema JS; ten Hoeve-Duurkens RH; Dijkstra DS; Robillard GT Biochemistry; 1991 Jul; 30(27):6716-21. PubMed ID: 1905954 [TBL] [Abstract][Full Text] [Related]
30. Chirality of the hydrogen transfer to the coenzyme catalyzed by ribitol dehydrogenase from Klebsiella pneumoniae and D-mannitol 1-phosphate dehydrogenase from Escherichia coli. Alizade MA; Gaede K; Brendel K Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1163-9. PubMed ID: 185137 [TBL] [Abstract][Full Text] [Related]
31. Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Gaspar P; Neves AR; Ramos A; Gasson MJ; Shearman CA; Santos H Appl Environ Microbiol; 2004 Mar; 70(3):1466-74. PubMed ID: 15006767 [TBL] [Abstract][Full Text] [Related]
32. Analysis of mutations affecting the dissmilation of galactitol (dulcitol) in Escherichia coli K 12. Lengeler J Mol Gen Genet; 1977 Mar; 152(1):83-91. PubMed ID: 325390 [No Abstract] [Full Text] [Related]
34. HPr/HPr-P phosphoryl exchange reaction catalyzed by the mannitol specific enzyme II of the bacterial phosphotransferase system. Sutrina SL; Waygood EB; Grenier FC; Saier MH J Biol Chem; 1987 Feb; 262(6):2636-41. PubMed ID: 3102473 [TBL] [Abstract][Full Text] [Related]
35. Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium. Saier MH; Newman MJ J Biol Chem; 1976 Jun; 251(12):3834-7. PubMed ID: 819432 [TBL] [Abstract][Full Text] [Related]
36. Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Robillard GT; Boer H; van Weeghel RP; Wolters G; Dijkstra A Biochemistry; 1993 Sep; 32(37):9553-62. PubMed ID: 8373762 [TBL] [Abstract][Full Text] [Related]
37. [Transport of six-atom alcohols by enterobacteria]. Bol'shakova TN; Gershanovich VN Mol Gen Mikrobiol Virusol; 1991 Jan; (1):10-6. PubMed ID: 1850819 [TBL] [Abstract][Full Text] [Related]
38. Growth on D-arabitol of a mutant strain of Escherichia coli K12 using a novel dehydrogenase and enzymes related to L-1,2-propanediol and D-xylose metabolism. Wu TT J Gen Microbiol; 1976 Jun; 94(2):246-56. PubMed ID: 181526 [TBL] [Abstract][Full Text] [Related]
39. The role of enzyme I in the unmasking of an essential thiol of the membrane-bound enzyme II of the phosphoenolpyruvate-glucose phosphotransferase system of Escherichia coli. Haguenauer-Tsapis R; Kepes A Biochim Biophys Acta; 1977 Sep; 469(2):211-5. PubMed ID: 197996 [TBL] [Abstract][Full Text] [Related]
40. Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Mattoo RL; Waygood EB Can J Biochem Cell Biol; 1983 Jan; 61(1):29-37. PubMed ID: 6406017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]