These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11006262)

  • 1. Effects of hypoxemia on the a- and b-waves of the electroretinogram in the cat retina.
    Kang Derwent J; Linsenmeier RA
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3634-42. PubMed ID: 11006262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoglycemia increases the sensitivity of the cat electroretinogram to hypoxemia.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(6):983-93. PubMed ID: 12020089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adaptation level and hypoglycemia on function of the cat retina during hypoxemia.
    McRipley MA; Ahmed J; Chen EP; Linsenmeier RA
    Vis Neurosci; 1997; 14(2):339-50. PubMed ID: 9147485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electroretinogram components in Abyssinian cats with hereditary retinal degeneration.
    Kang Derwent JJ; Padnick-Silver L; McRipley M; Giuliano E; Linsenmeier RA; Narfström K
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3673-82. PubMed ID: 16877442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraretinal analysis of the threshold dark-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1221-32. PubMed ID: 2746322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):656-63. PubMed ID: 8113017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal oxygen tension and the electroretinogram during arterial occlusion in the cat.
    Braun RD; Linsenmeier RA
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):523-41. PubMed ID: 7890484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1233-43. PubMed ID: 2746323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina.
    Albanna W; Lueke JN; Sjapic V; Kotliar K; Hescheler J; Clusmann H; Sjapic S; Alpdogan S; Schneider T; Schubert GA; Neumaier F
    Curr Eye Res; 2017 Nov; 42(11):1518-1526. PubMed ID: 28841046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypoxia and hypercapnia on the light peak and electroretinogram of the cat.
    Linsenmeier RA; Mines AH; Steinberg RH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):37-46. PubMed ID: 6826313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of electroretinogram during systemic hypercapnia with intraretinal K(+)-microelectrodes in cats.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3957-61. PubMed ID: 7928195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ornithine on the electroretinogram in cat retina.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1732-7. PubMed ID: 7601655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of glycolytic and oxidative pathways to retinal photoreceptor function.
    Bui BV; Kalloniatis M; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2708-15. PubMed ID: 12766077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia.
    Linsenmeier RA; Braun RD
    J Gen Physiol; 1992 Feb; 99(2):177-97. PubMed ID: 1613482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H; Vinberg F; Pitkänen M; Kommonen B; Koskelainen A
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5653-64. PubMed ID: 22743325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dihydropyridine isradipine inhibits the murine but not the bovine A-wave response of the electroretinogram.
    Banat M; Lüke M; Siapich SA; Hescheler J; Weiergräber M; Schneider T
    Acta Ophthalmol; 2008 Sep; 86(6):676-82. PubMed ID: 18752519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone phototransduction and growth of the ERG b-wave during light adaptation.
    Alexander KR; Raghuram A; Rajagopalan AS
    Vision Res; 2006 Oct; 46(22):3941-8. PubMed ID: 16750238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.