These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11006362)

  • 1. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants.
    Robertson DG; Reily MD; Sigler RE; Wells DF; Paterson DA; Braden TK
    Toxicol Sci; 2000 Oct; 57(2):326-37. PubMed ID: 11006362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the acute biochemical effects of La(NO3)3 using 1H NMR spectroscopy of urine combined with pattern recognition.
    Wu H; Zhang X; Li X; Li Z; Wu Y; Pei F
    J Inorg Biochem; 2005 Feb; 99(2):644-50. PubMed ID: 15621299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach.
    Waters NJ; Holmes E; Williams A; Waterfield CJ; Farrant RD; Nicholson JK
    Chem Res Toxicol; 2001 Oct; 14(10):1401-12. PubMed ID: 11599932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of metabolic profiles from serum from hepatotoxin-treated rats by nuclear-magnetic-resonance-spectroscopy-based metabonomic analysis.
    Wu H; Zhang X; Li X; Li Z; Wu Y; Pei F
    Anal Biochem; 2005 May; 340(1):99-105. PubMed ID: 15802135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemometric analysis of biofluids following toxicant induced hepatotoxicity: a metabonomic approach to distinguish the effects of 1-naphthylisothiocyanate from its products.
    Azmi J; Griffin JL; Shore RF; Holmes E; Nicholson JK
    Xenobiotica; 2005 Aug; 35(8):839-52. PubMed ID: 16278195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of urinary microRNA profiles in rats that may diagnose hepatotoxicity.
    Yang X; Greenhaw J; Shi Q; Su Z; Qian F; Davis K; Mendrick DL; Salminen WF
    Toxicol Sci; 2012 Feb; 125(2):335-44. PubMed ID: 22112502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform procedure of (1)H NMR analysis of rat urine and toxicometabonomics Part II: comparison of NMR profiles for classification of hepatotoxicity.
    Schoonen WG; Kloks CP; Ploemen JP; Smit MJ; Zandberg P; Horbach GJ; Mellema JR; Thijssen-Vanzuylen C; Tas AC; van Nesselrooij JH; Vogels JT
    Toxicol Sci; 2007 Jul; 98(1):286-97. PubMed ID: 17420222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate.
    Waters NJ; Holmes E; Waterfield CJ; Farrant RD; Nicholson JK
    Biochem Pharmacol; 2002 Jul; 64(1):67-77. PubMed ID: 12106607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR spectroscopic-based metabonomic investigation on the acute biochemical effects induced by Ce(NO3)3 in rats.
    Wu H; Zhang X; Liao P; Li Z; Li W; Li X; Wu Y; Pei F
    J Inorg Biochem; 2005 Nov; 99(11):2151-60. PubMed ID: 16144712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pretreatment of rats with an urinary preparation on liver injuries induced by carbon tetrachloride and alpha-naphthylisothiocyanate.
    Lai TY; Wu YW; Lin JG; Lin WC
    Am J Chin Med; 1998; 26(3-4):343-51. PubMed ID: 9862022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acids metabonomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry.
    Yang L; Xiong A; He Y; Wang Z; Wang C; Wang Z; Li W; Yang L; Hu Z
    Chem Res Toxicol; 2008 Dec; 21(12):2280-8. PubMed ID: 19053324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration.
    Zira A; Kostidis S; Theocharis S; Sigala F; Engelsen SB; Andreadou I; Mikros E
    Toxicology; 2013 Jan; 303():115-24. PubMed ID: 23146765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins.
    Beckwith-Hall BM; Nicholson JK; Nicholls AW; Foxall PJ; Lindon JC; Connor SC; Abdi M; Connelly J; Holmes E
    Chem Res Toxicol; 1998 Apr; 11(4):260-72. PubMed ID: 9548796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabonomics profile of urine from rats administrated with different treatment period of isoniazid].
    Liao Y; Peng SQ; Yan XZ; Zhang LS
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Dec; 29(6):730-7. PubMed ID: 18595248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats.
    Shi C; Wu CQ; Cao AM; Sheng HZ; Yan XZ; Liao MY
    Toxicol Lett; 2007 Sep; 173(3):161-7. PubMed ID: 17826925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-based metabonomic study on the subacute toxicity of aristolochic acid in rats.
    Zhang X; Wu H; Liao P; Li X; Ni J; Pei F
    Food Chem Toxicol; 2006 Jul; 44(7):1006-14. PubMed ID: 16457928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promising toxicological biomarkers for the diagnosis of liver injury types: Bile acid metabolic profiles and oxidative stress marker as screening tools in drug development.
    Masubuchi N; Nishiya T; Imaoka M; Mizumaki K; Okazaki O
    Chem Biol Interact; 2016 Aug; 255():74-82. PubMed ID: 26365562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated metabonomic method for profiling of metabolic changes in carbon tetrachloride induced rat urine.
    Lin Y; Si D; Zhang Z; Liu C
    Toxicology; 2009 Feb; 256(3):191-200. PubMed ID: 19110028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance microscopy of toxic renal injury induced by bromoethylamine in rats.
    Hedlund LW; Maronpot RR; Johnson GA; Cofer GP; Mills GI; Wheeler CT
    Fundam Appl Toxicol; 1991 May; 16(4):787-97. PubMed ID: 1884916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition.
    Holmes E; Nicholls AW; Lindon JC; Ramos S; Spraul M; Neidig P; Connor SC; Connelly J; Damment SJ; Haselden J; Nicholson JK
    NMR Biomed; 1998; 11(4-5):235-44. PubMed ID: 9719578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.