These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 11006388)
1. Numerical 3D analysis of oscillatory flow in the time-varying laryngeal channel. Renotte C; Bouffioux V; Wilquem F J Biomech; 2000 Dec; 33(12):1637-44. PubMed ID: 11006388 [TBL] [Abstract][Full Text] [Related]
2. Effect of the larynx on oscillatory flow in the central airways: a model study. Menon AS; Weber ME; Chang HK J Appl Physiol (1985); 1985 Jul; 59(1):160-9. PubMed ID: 4030560 [TBL] [Abstract][Full Text] [Related]
3. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model. Xue Q; Zheng X J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452 [TBL] [Abstract][Full Text] [Related]
4. Effect of glottic geometry on breathing: three-dimensional unsteady numerical simulation of respiration in a case with congenital glottic web. Gökcan MK; Günaydinoğlu E; Kurtuluş DF Eur Arch Otorhinolaryngol; 2016 Oct; 273(10):3219-29. PubMed ID: 27177730 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of glottis-induced turbulence in oscillatory flow: an empirical investigation. Choi Y; Wroblewski DE J Biomech Eng; 1998 Apr; 120(2):217-26. PubMed ID: 10412383 [TBL] [Abstract][Full Text] [Related]
6. Influence of glottic aperture on the tracheal flow. Brouns M; Verbanck S; Lacor C J Biomech; 2007; 40(1):165-72. PubMed ID: 16403504 [TBL] [Abstract][Full Text] [Related]
7. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Lin CL; Tawhai MH; McLennan G; Hoffman EA Respir Physiol Neurobiol; 2007 Aug; 157(2-3):295-309. PubMed ID: 17360247 [TBL] [Abstract][Full Text] [Related]
9. Pressure and velocity profiles in a static mechanical hemilarynx model. Alipour F; Scherer RC J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021 [TBL] [Abstract][Full Text] [Related]
10. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES. Chen W; Wang L; Chen L; Ge H; Cui X Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114 [TBL] [Abstract][Full Text] [Related]
11. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation. Cui X; Wu W; Gutheil E Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996 [TBL] [Abstract][Full Text] [Related]
13. Resistance and reactance of the excised human larynx, trachea, and main bronchi. Jiang TX; Cauberghs M; Van de Woestijne KP J Appl Physiol (1985); 1987 Nov; 63(5):1788-95. PubMed ID: 3693214 [TBL] [Abstract][Full Text] [Related]
14. LDA measurements of velocities in a simulated collapsed tube. Bertram CD; Godbole SA J Biomech Eng; 1997 Aug; 119(3):357-63. PubMed ID: 9285350 [TBL] [Abstract][Full Text] [Related]
16. A computational study on the characteristics of airflow in bilateral abductor vocal fold immobility. Gökcan MK; Kurtuluş DF; Ustüner E; Ozyürek E; Kesici GG; Erdem SC; Dursun G; Yağci C Laryngoscope; 2010 Sep; 120(9):1808-18. PubMed ID: 20715089 [TBL] [Abstract][Full Text] [Related]
17. Secondary velocity fields in the conducting airways of the human lung. Fresconi FE; Prasad AK J Biomech Eng; 2007 Oct; 129(5):722-32. PubMed ID: 17887898 [TBL] [Abstract][Full Text] [Related]
18. Influence of acoustic loading on an effective single mass model of the vocal folds. Zañartu M; Mongeau L; Wodicka GR J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533 [TBL] [Abstract][Full Text] [Related]
19. Asymmetric glottal jet deflection: differences of two- and three-dimensional models. Mattheus W; Brücker C J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129 [TBL] [Abstract][Full Text] [Related]
20. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx. Slavit DH; McCaffrey TV Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]