BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 11006420)

  • 1. Entrainment of the rat motor activity rhythm: effects of the light-dark cycle and physical exercise.
    Cambras T; Vilaplana J; Campuzano A; Canal-Corretger MM; Carulla M; Díez-Noguera A
    Physiol Behav; 2000; 70(3-4):227-32. PubMed ID: 11006420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of motor activity circadian rhythm in rats after exposure to LD cycles of 4-h period.
    Vilaplana J; Cambras T; Díez-Noguera A
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R95-102. PubMed ID: 9038996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL.
    Cambras T; Vilaplana J; Torres A; Canal MM; Casamitjana N; Campuzano A; Díez-Noguera A
    Physiol Behav; 1998 Mar; 63(5):875-82. PubMed ID: 9618011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of the rat motor activity rhythm under T cycles shorter than 24 hours.
    Campuzano A; Vilaplana J; Cambras T; Díez-Noguera A
    Physiol Behav; 1998 Jan; 63(2):171-6. PubMed ID: 9423955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel,
    Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M
    Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of light on the development of the circadian rhythm of motor activity in the mouse.
    Canal-Corretger MM; Vilaplana J; Cambras T; Díez-Noguera A
    Chronobiol Int; 2001 Jul; 18(4):683-96. PubMed ID: 11587090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice.
    Valentinuzzi VS; Scarbrough K; Takahashi JS; Turek FW
    Am J Physiol; 1997 Dec; 273(6):R1957-64. PubMed ID: 9435649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure to T-cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats.
    Anglès-Pujolràs M; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(6):1049-64. PubMed ID: 18075798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous manifestation of free-running and entrained rhythms in the rat motor activity explained by a multioscillatory system.
    Vilaplana J; Cambras T; Campuzano A; Díez-Noguera A
    Chronobiol Int; 1997 Jan; 14(1):9-18. PubMed ID: 9042547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.
    Scarbrough K; Turek FW
    Brain Res; 1996 Oct; 736(1-2):251-9. PubMed ID: 8930331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of manganese intoxication on the circadian rest-activity rhythms in the rat.
    Bouabid S; Fifel K; Benazzouz A; Lakhdar-Ghazal N
    Neuroscience; 2016 Sep; 331():13-23. PubMed ID: 27316552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of the circadian system of Octodon degus by T28 and T21 light-dark cycles.
    Vivanco P; Otalora BB; Rol MA; Madrid JA
    Chronobiol Int; 2010 Sep; 27(8):1580-95. PubMed ID: 20854136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding behavior and entrainment limits in the circadian system of the rat.
    Madrid JA; Sánchez-Vázquez FJ; Lax P; Matas P; Cuenca EM; Zamora S
    Am J Physiol; 1998 Aug; 275(2):R372-83. PubMed ID: 9688671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity rhythm of golden hamster (Mesocricetus auratus) can be entrained to a 19-h light-dark cycle.
    Chiesa JJ; Anglès-Pujolràs M; Díez-Noguera A; Cambras T
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R998-R1005. PubMed ID: 16183632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.