These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 11006420)
1. Entrainment of the rat motor activity rhythm: effects of the light-dark cycle and physical exercise. Cambras T; Vilaplana J; Campuzano A; Canal-Corretger MM; Carulla M; Díez-Noguera A Physiol Behav; 2000; 70(3-4):227-32. PubMed ID: 11006420 [TBL] [Abstract][Full Text] [Related]
2. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment. Cambras T; Chiesa J; Araujo J; Díez-Noguera A J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008 [TBL] [Abstract][Full Text] [Related]
3. Dissociation of motor activity circadian rhythm in rats after exposure to LD cycles of 4-h period. Vilaplana J; Cambras T; Díez-Noguera A Am J Physiol; 1997 Jan; 272(1 Pt 2):R95-102. PubMed ID: 9038996 [TBL] [Abstract][Full Text] [Related]
4. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL. Cambras T; Vilaplana J; Torres A; Canal MM; Casamitjana N; Campuzano A; Díez-Noguera A Physiol Behav; 1998 Mar; 63(5):875-82. PubMed ID: 9618011 [TBL] [Abstract][Full Text] [Related]
5. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters. Chiesa JJ; Díez-Noguera A; Cambras T Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844 [TBL] [Abstract][Full Text] [Related]
6. Dissociation of the rat motor activity rhythm under T cycles shorter than 24 hours. Campuzano A; Vilaplana J; Cambras T; Díez-Noguera A Physiol Behav; 1998 Jan; 63(2):171-6. PubMed ID: 9423955 [TBL] [Abstract][Full Text] [Related]
8. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096 [TBL] [Abstract][Full Text] [Related]
9. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice. Castillo C; Molyneux P; Carlson R; Harrington ME Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557 [TBL] [Abstract][Full Text] [Related]
10. Effect of light on the development of the circadian rhythm of motor activity in the mouse. Canal-Corretger MM; Vilaplana J; Cambras T; Díez-Noguera A Chronobiol Int; 2001 Jul; 18(4):683-96. PubMed ID: 11587090 [TBL] [Abstract][Full Text] [Related]
11. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa. Ellis DJ; Firth BT; Belan I Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837 [TBL] [Abstract][Full Text] [Related]
12. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Valentinuzzi VS; Scarbrough K; Takahashi JS; Turek FW Am J Physiol; 1997 Dec; 273(6):R1957-64. PubMed ID: 9435649 [TBL] [Abstract][Full Text] [Related]
13. Exposure to T-cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats. Anglès-Pujolràs M; Díez-Noguera A; Cambras T Chronobiol Int; 2007; 24(6):1049-64. PubMed ID: 18075798 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous manifestation of free-running and entrained rhythms in the rat motor activity explained by a multioscillatory system. Vilaplana J; Cambras T; Campuzano A; Díez-Noguera A Chronobiol Int; 1997 Jan; 14(1):9-18. PubMed ID: 9042547 [TBL] [Abstract][Full Text] [Related]
15. Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters. Scarbrough K; Turek FW Brain Res; 1996 Oct; 736(1-2):251-9. PubMed ID: 8930331 [TBL] [Abstract][Full Text] [Related]
16. Consequences of manganese intoxication on the circadian rest-activity rhythms in the rat. Bouabid S; Fifel K; Benazzouz A; Lakhdar-Ghazal N Neuroscience; 2016 Sep; 331():13-23. PubMed ID: 27316552 [TBL] [Abstract][Full Text] [Related]
17. Dissociation of the circadian system of Octodon degus by T28 and T21 light-dark cycles. Vivanco P; Otalora BB; Rol MA; Madrid JA Chronobiol Int; 2010 Sep; 27(8):1580-95. PubMed ID: 20854136 [TBL] [Abstract][Full Text] [Related]
18. Feeding behavior and entrainment limits in the circadian system of the rat. Madrid JA; Sánchez-Vázquez FJ; Lax P; Matas P; Cuenca EM; Zamora S Am J Physiol; 1998 Aug; 275(2):R372-83. PubMed ID: 9688671 [TBL] [Abstract][Full Text] [Related]
19. Activity rhythm of golden hamster (Mesocricetus auratus) can be entrained to a 19-h light-dark cycle. Chiesa JJ; Anglès-Pujolràs M; Díez-Noguera A; Cambras T Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R998-R1005. PubMed ID: 16183632 [TBL] [Abstract][Full Text] [Related]
20. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. Ebling FJ; Lincoln GA; Wollnik F; Anderson N J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]