BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11006842)

  • 1. Physical degradation of wheat straw by the in-vessel and windrow methods of mushroom compost production.
    Lyons GA; McCall RD; Sharma HS
    Can J Microbiol; 2000 Sep; 46(9):817-25. PubMed ID: 11006842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms.
    Kertesz MA; Thai M
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1639-1650. PubMed ID: 29362825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.
    Wang L; Mao J; Zhao H; Li M; Wei Q; Zhou Y; Shao H
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1249-60. PubMed ID: 27337959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial ecology of the Agaricus bisporus mushroom cropping process.
    McGee CF
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1075-1083. PubMed ID: 29222576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of Agaricus subrufescens during the first two weeks of cultivation.
    Farnet AM; Qasemian L; Peter-Valence F; Ruaudel F; Savoie JM; Ferré E
    Bioresour Technol; 2013 Mar; 131():266-73. PubMed ID: 23357087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts.
    Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J
    Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.
    Stoknes K; Beyer DM; Norgaard E
    J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates.
    Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR
    Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity.
    Noble R; Hobbs PJ; Mead A; Dobrovin-Pennington A
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):99-110. PubMed ID: 12242630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate.
    Thai M; Safianowicz K; Bell TL; Kertesz MA
    ISME Commun; 2022 Sep; 2(1):88. PubMed ID: 37938292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production.
    Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ
    Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost.
    Mamiro DP; Royse DJ
    Bioresour Technol; 2008 May; 99(8):3205-12. PubMed ID: 17761414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost.
    Llarena-Hernández RC; Largeteau ML; Farnet AM; Foulongne-Oriol M; Ferrer N; Regnault-Roger C; Savoie JM
    World J Microbiol Biotechnol; 2013 Jul; 29(7):1243-53. PubMed ID: 23417262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.
    Vieira FR; Pecchia JA
    Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.
    Jurak E; Punt AM; Arts W; Kabel MA; Gruppen H
    PLoS One; 2015; 10(10):e0138909. PubMed ID: 26436656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignocellulose Degradation Efficiency of
    Wang Q; Xiao T; Juan J; Qian W; Zhang J; Chen H; Shen X; Huang J
    J Agric Food Chem; 2023 Jul; 71(28):10607-10615. PubMed ID: 37417743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen balance and supply in Australasian mushroom composts.
    Noble R; Thai M; Kertesz MA
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):151. PubMed ID: 38240861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].
    Huang YM; Liu XL; Jiang JS; Huang H; Liu D
    Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2069-76. PubMed ID: 23189681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars.
    Llarena-Hernández CR; Largeteau ML; Ferrer N; Regnault-Roger C; Savoie JM
    J Sci Food Agric; 2014 Jan; 94(1):77-84. PubMed ID: 23633302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of changes in substrate characteristics during mushroom compost production.
    Lyons GA; Sharma HS; Kilpatrick M; Cheung L; Moore S
    J Agric Food Chem; 2006 Jun; 54(13):4658-67. PubMed ID: 16787012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.