These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11006985)

  • 1. The neural correlates of orienting: an integration of fMRI and skin conductance orienting.
    Williams LM; Brammer MJ; Skerrett D; Lagopolous J; Rennie C; Kozek K; Olivieri G; Peduto T; Gordon E
    Neuroreport; 2000 Sep; 11(13):3011-5. PubMed ID: 11006985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping frontal-limbic correlates of orienting to change detection.
    Williams LM; Felmingham K; Kemp AH; Rennie C; Brown KJ; Bryant RA; Gordon E
    Neuroreport; 2007 Feb; 18(3):197-202. PubMed ID: 17314656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The network of brain areas involved in the motion aftereffect.
    Taylor JG; Schmitz N; Ziemons K; Grosse-Ruyken ML; Gruber O; Mueller-Gaertner HW; Shah NJ
    Neuroimage; 2000 Apr; 11(4):257-70. PubMed ID: 10725183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causality analysis defines neural streams of orienting and holding of attention.
    Ozaki TJ; Ogawa S
    Neuroreport; 2009 Oct; 20(15):1371-5. PubMed ID: 19730137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural response to the visual familiarity of faces.
    Gobbini MI; Haxby JV
    Brain Res Bull; 2006 Dec; 71(1-3):76-82. PubMed ID: 17113931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward processing in the value-driven attention network: reward signals tracking cue identity and location.
    Anderson BA
    Soc Cogn Affect Neurosci; 2017 Mar; 12(3):461-467. PubMed ID: 27677944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subregions of human parietal cortex selectively encoding object orientation.
    Aso T; Hanakawa T; Matsuo K; Toma K; Shibasaki H; Fukuyama H; Nakai T
    Neurosci Lett; 2007 Mar; 415(3):225-30. PubMed ID: 17284349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural mechanisms for minimizing cross-modal distraction.
    Weissman DH; Warner LM; Woldorff MG
    J Neurosci; 2004 Dec; 24(48):10941-9. PubMed ID: 15574744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention.
    Small DM; Gitelman DR; Gregory MD; Nobre AC; Parrish TB; Mesulam MM
    Neuroimage; 2003 Mar; 18(3):633-41. PubMed ID: 12667840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis.
    Valet M; Sprenger T; Boecker H; Willoch F; Rummeny E; Conrad B; Erhard P; Tolle TR
    Pain; 2004 Jun; 109(3):399-408. PubMed ID: 15157701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural basis of the bilateral distribution advantage.
    Pollmann S; Zaidel E; von Cramon DY
    Exp Brain Res; 2003 Dec; 153(3):322-33. PubMed ID: 14508634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic electrodermal responses after visual stimulation in the cortically blind hemifield.
    Zihl J; Tretter F; Singer W
    Behav Brain Res; 1980 Apr; 1(2):197-203. PubMed ID: 7284086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural activities for negative priming with affective stimuli: an fMRI study.
    Leung KK; Lee TM; Xiao Z; Wang Z; Zhang JX; Yip PS; Li LS
    Neurosci Lett; 2008 Mar; 433(3):194-8. PubMed ID: 18281155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticipating the good and the bad: A study on the neural correlates of bivalent emotion anticipation and their malleability via attentional deployment.
    Kruschwitz JD; Waller L; List D; Wisniewski D; Ludwig VU; Korb F; Wolfensteller U; Goschke T; Walter H
    Neuroimage; 2018 Dec; 183():553-564. PubMed ID: 30145207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study.
    Downar J; Crawley AP; Mikulis DJ; Davis KD
    Neuroimage; 2001 Dec; 14(6):1256-67. PubMed ID: 11707082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural representation of anxiety and personality during exposure to anxiety-provoking and neutral scenes from scary movies.
    Straube T; Preissler S; Lipka J; Hewig J; Mentzel HJ; Miltner WH
    Hum Brain Mapp; 2010 Jan; 31(1):36-47. PubMed ID: 19585588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal lobe networks for effective processing of ambiguously expressed emotions in humans.
    Nomura M; Iidaka T; Kakehi K; Tsukiura T; Hasegawa T; Maeda Y; Matsue Y
    Neurosci Lett; 2003 Sep; 348(2):113-6. PubMed ID: 12902031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.