These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11007294)

  • 21. Minimum viewing angle for visually guided ground speed control in bumblebees.
    Baird E; Kornfeldt T; Dacke M
    J Exp Biol; 2010 May; 213(Pt 10):1625-32. PubMed ID: 20435812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.
    Portelli G; Ruffier F; Roubieu FL; Franceschini N
    PLoS One; 2011 May; 6(5):e19486. PubMed ID: 21589861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bio-inspired flying robot sheds light on insect piloting abilities.
    Franceschini N; Ruffier F; Serres J
    Curr Biol; 2007 Feb; 17(4):329-35. PubMed ID: 17291757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion.
    Tichit P; Alves-Dos-Santos I; Dacke M; Baird E
    Proc Biol Sci; 2020 Feb; 287(1921):20192720. PubMed ID: 32070252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bumblebee flight performance in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Feb; 202(2):97-103. PubMed ID: 26614094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Goal seeking in honeybees: matching of optic flow snapshots?
    Dittmar L; Stürzl W; Baird E; Boeddeker N; Egelhaaf M
    J Exp Biol; 2010 Sep; 213(Pt 17):2913-23. PubMed ID: 20709919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A stingless bee can use visual odometry to estimate both height and distance.
    Eckles MA; Roubik DW; Nieh JC
    J Exp Biol; 2012 Sep; 215(Pt 18):3155-60. PubMed ID: 22915710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.
    Srinivasan MV
    Physiol Rev; 2011 Apr; 91(2):413-60. PubMed ID: 21527730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.
    Cope AJ; Sabo C; Gurney K; Vasilaki E; Marshall JA
    PLoS Comput Biol; 2016 May; 12(5):e1004887. PubMed ID: 27148968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bumblebees Perform Well-Controlled Landings in Dim Light.
    Reber T; Dacke M; Warrant E; Baird E
    Front Behav Neurosci; 2016; 10():174. PubMed ID: 27683546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wind alters landing dynamics in bumblebees.
    Chang JJ; Crall JD; Combes SA
    J Exp Biol; 2016 Sep; 219(Pt 18):2819-2822. PubMed ID: 27436135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization.
    Das S; Biswas S; Panigrahi BK; Kundu S; Basu D
    IEEE Trans Cybern; 2014 Oct; 44(10):1884-97. PubMed ID: 25222729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual tracking of moving targets by freely flying honeybees.
    Zhang SW; Wang XA; Liu ZL; Srinivasan MV
    Vis Neurosci; 1990 Apr; 4(4):379-86. PubMed ID: 2271450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Honeybee flight metabolic rate: does it depend upon air temperature?
    Woods WA; Heinrich B; Stevenson RD
    J Exp Biol; 2005 Mar; 208(Pt 6):1161-73. PubMed ID: 15767315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus.
    Paskins KE; Bowyer A; Megill WM; Scheibe JS
    J Exp Biol; 2007 Apr; 210(Pt 8):1413-23. PubMed ID: 17401124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field.
    Burnett NP; Badger MA; Combes SA
    PLoS One; 2022; 17(3):e0265911. PubMed ID: 35325004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The need for muscle co-contraction prior to a landing.
    Yeadon MR; King MA; Forrester SE; Caldwell GE; Pain MT
    J Biomech; 2010 Jan; 43(2):364-9. PubMed ID: 19840881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.