These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 11007447)

  • 21. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure.
    Gorgoni M; Ferrara M; D'Atri A; Lauri G; Scarpelli S; Truglia I; De Gennaro L
    Sleep Med; 2015 Jul; 16(7):883-90. PubMed ID: 26004680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sleep inertia: performance changes after sleep, rest and active waking.
    Hofer-Tinguely G; Achermann P; Landolt HP; Regel SJ; Rétey JV; Dürr R; Borbély AA; Gottselig JM
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):323-31. PubMed ID: 15722204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing vigilance through a brief pencil and paper letter cancellation task (LCT): effects of one night of sleep deprivation and of the time of day.
    Casagrande M; Violani C; Curcio G; Bertini M
    Ergonomics; 1997 Jun; 40(6):613-30. PubMed ID: 9174413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep deprivation and phasic activity of REM sleep: independence of middle-ear muscle activity from rapid eye movements.
    De Gennaro L; Ferrara M
    Sleep; 2000 Feb; 23(1):81-5. PubMed ID: 10678468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamics of neurobehavioural recovery following sleep loss.
    Lamond N; Jay SM; Dorrian J; Ferguson SA; Jones C; Dawson D
    J Sleep Res; 2007 Mar; 16(1):33-41. PubMed ID: 17309761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. No effects of repeated forced wakings during three consecutive nights on morning cortisol awakening responses (CAR): a preliminary study.
    Dettenborn L; Rosenloecher F; Kirschbaum C
    Psychoneuroendocrinology; 2007; 32(8-10):915-21. PubMed ID: 17681429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do the timing and length of a night-shift nap affect sleep inertia?
    Kubo T; Takahashi M; Takeyama H; Matsumoto S; Ebara T; Murata K; Tachi N; Itani T
    Chronobiol Int; 2010 Jul; 27(5):1031-44. PubMed ID: 20636214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of one night of partial sleep deprivation upon diurnal rhythms of accuracy and consistency in throwing darts.
    Edwards BJ; Waterhouse J
    Chronobiol Int; 2009 May; 26(4):756-68. PubMed ID: 19444754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
    Mulrine HM; Signal TL; van den Berg MJ; Gander PH
    Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective slow-wave sleep (SWS) deprivation and SWS rebound: do we need a fixed SWS amount per night?
    Ferrara M; De Gennaro L; Bertini M
    Sleep Res Online; 1999; 2(1):15-9. PubMed ID: 11382878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing sleep-loss sleepiness and sleep inertia: lapses make the difference.
    Miccoli L; Versace F; Koterle S; Cavallero C
    Chronobiol Int; 2008 Sep; 25(5):725-44. PubMed ID: 18780200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of sleep debt and monotonous work on sleepiness and performance during a 12-h dayshift.
    Sallinen M; Härmä M; Akila R; Holm A; Luukkonen R; Mikola H; Müller K; Virkkala J
    J Sleep Res; 2004 Dec; 13(4):285-94. PubMed ID: 15560763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The possible mechanisms of the disturbed circadian sleep-wake rhythm after time zone changes.
    Endo S; Sasaki M
    J UOEH; 1985 Mar; 7 Suppl():151-61. PubMed ID: 4012104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance, sleep and circadian phase during a week of simulated night work.
    Lamond N; Dorrian J; Roach GD; Burgess HJ; Holmes AL; McCulloch K; Fletcher A; Dawson D
    J Hum Ergol (Tokyo); 2001 Dec; 30(1-2):137-42. PubMed ID: 14564872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion.
    Vgontzas AN; Pejovic S; Zoumakis E; Lin HM; Bixler EO; Basta M; Fang J; Sarrigiannidis A; Chrousos GP
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E253-61. PubMed ID: 16940468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy of Dexedrine for maintaining aviator performance during 64 hours of sustained wakefulness: a simulator study.
    Caldwell JA; Smythe NK; Leduc PA; Caldwell JL
    Aviat Space Environ Med; 2000 Jan; 71(1):7-18. PubMed ID: 10632125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of the relevance of laboratory and motorcycling tests for investigating time of day and sleep deprivation influences on motorcycling performance.
    Bougard C; Moussay S; Davenne D
    Accid Anal Prev; 2008 Mar; 40(2):635-43. PubMed ID: 18329416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleepiness and sleep in a simulated "six hours on/six hours off" sea watch system.
    Eriksen CA; Gillberg M; Vestergren P
    Chronobiol Int; 2006; 23(6):1193-202. PubMed ID: 17190705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of time of day and partial sleep deprivation on short-term, high-power output.
    Souissi N; Souissi M; Souissi H; Chamari K; Tabka Z; Dogui M; Davenne D
    Chronobiol Int; 2008 Nov; 25(6):1062-76. PubMed ID: 19005905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sleep is required for improving reaction times after training on a procedural visuo-motor task.
    Gais S; Köster S; Sprenger A; Bethke J; Heide W; Kimmig H
    Neurobiol Learn Mem; 2008 Nov; 90(4):610-5. PubMed ID: 18723102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.