BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 11007545)

  • 1. Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells.
    Frotscher M; Drakew A; Heimrich B
    Cereb Cortex; 2000 Oct; 10(10):946-51. PubMed ID: 11007545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization.
    Drakew A; Frotscher M; Heimrich B
    Neuroscience; 1999; 94(3):767-74. PubMed ID: 10579567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic development of dentate granule cells in the absence of their specific extrinsic afferents.
    Zafirov S; Heimrich B; Frotscher M
    J Comp Neurol; 1994 Jul; 345(3):472-80. PubMed ID: 7929913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons.
    Deller T; Martinez A; Nitsch R; Frotscher M
    J Neurosci; 1996 May; 16(10):3322-33. PubMed ID: 8627369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological variability is a characteristic feature of granule cells in the primate fascia dentata: a combined Golgi/electron microscope study.
    Seress L; Frotscher M
    J Comp Neurol; 1990 Mar; 293(2):253-67. PubMed ID: 19189715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.
    Buhl EH; Dann JF
    Hippocampus; 1991 Apr; 1(2):131-52. PubMed ID: 1727000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Targeting of Lateral Entorhinal Inputs onto Newly Integrated Granule Cells.
    Woods NI; Vaaga CE; Chatzi C; Adelson JD; Collie MF; Perederiy JV; Tovar KR; Westbrook GL
    J Neurosci; 2018 Jun; 38(26):5843-5853. PubMed ID: 29793975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transneuronal changes in dendrites of GABAergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion.
    Nitsch R; Frotscher M
    Hippocampus; 1993 Oct; 3(4):481-90. PubMed ID: 8269039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures.
    Müller CM; Vlachos A; Deller T
    Cell Calcium; 2010 Mar; 47(3):242-52. PubMed ID: 20053446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice.
    Suzuki F; Makiura Y; Guilhem D; Sørensen JC; Onteniente B
    Exp Neurol; 1997 May; 145(1):203-13. PubMed ID: 9184122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the entorhino-hippocampal projection: guidance by Cajal-Retzius cell axons.
    Ceranik K; Zhao S; Frotscher M
    Ann N Y Acad Sci; 2000 Jun; 911():43-54. PubMed ID: 10911866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms.
    Kossel AH; Williams CV; Schweizer M; Kater SB
    J Neurosci; 1997 Aug; 17(16):6314-24. PubMed ID: 9236241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice.
    Deller T; Drakew A; Frotscher M
    Exp Neurol; 1999 Apr; 156(2):239-53. PubMed ID: 10328933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of peripheral dendrites of GABAergic neurons requires specific input.
    Nitsch R; Frotscher M
    Brain Res; 1991 Jul; 554(1-2):304-7. PubMed ID: 1933311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse.
    Vuksic M; Del Turco D; Bas Orth C; Burbach GJ; Feng G; Müller CM; Schwarzacher SW; Deller T
    Hippocampus; 2008; 18(4):364-75. PubMed ID: 18189310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Golgi/electron microscopy technique for cell identification in immunocytochemical, retrograde labeling, and developmental studies of hippocampal neurons.
    Frotscher M
    Microsc Res Tech; 1992 Dec; 23(4):306-23. PubMed ID: 1295615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus.
    Tamamaki N
    J Comp Neurol; 1999 Aug; 411(2):257-66. PubMed ID: 10404251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesion-induced mossy fibers to the molecular layer of the rat fascia dentata: identification of postsynaptic granule cells by the Golgi-EM technique.
    Frotscher M; Zimmer J
    J Comp Neurol; 1983 Apr; 215(3):299-311. PubMed ID: 6189867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anatomical organization of the rat fascia dentata: new aspects of laminar organization as revealed by anterograde tracing with Phaseolus vulgaris-Luecoagglutinin (PHAL).
    Deller T
    Anat Embryol (Berl); 1998 Feb; 197(2):89-103. PubMed ID: 9497153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.