These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11007601)

  • 1. Influence of microgravity on crystal formation in biomineralization.
    Becker W; Marxen J; Epple M; Reelsen O
    J Appl Physiol (1985); 2000 Oct; 89(4):1601-7. PubMed ID: 11007601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryonic development of the freshwater snail Biomphalaria glabrata under microgravity conditions (STS-89 mission).
    Marxen JC; Reelsen O; Becker W
    J Gravit Physiol; 2001 Dec; 8(2):29-36. PubMed ID: 12365448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoliths developed in microgravity.
    Wiederhold ML; Harrison JL; Parker K; Nomura H
    J Gravit Physiol; 2000 Jul; 7(2):P39-42. PubMed ID: 12697538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments.
    DeBell L; Paulsen A; Spooner B
    Scanning Microsc; 1992; 6(4):1129-35. PubMed ID: 11539112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein crystal growth aboard the U.S. space shuttle flights STS-31 and STS-32.
    DeLucas LJ; Smith CD; Carter DC; Twigg P; He XM; Snyder RS; Weber PC; Schloss JV; Einspahr HM; Clancy LL; McPherson A; Koszelak S; Vandonselaar MM; Prasad L; Quail JW; Delbaere LT; Bugg CE
    Adv Space Res; 1992; 12(1):393-400. PubMed ID: 11536985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An aquatic ecosystem in space.
    Voeste D; Andriske M; Paris F; Levine HG; Blum V
    J Gravit Physiol; 1999 Jul; 6(1):P83-4. PubMed ID: 11543037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of synchrotron-radiation-based computer microtomography (SRICT) to selected biominerals: embryonic snails, statoliths of medusae, and human teeth.
    Prymak O; Tiemann H; Sötje I; Marxen JC; Klocke A; Kahl-Nieke B; Beckmann F; Donath T; Epple M
    J Biol Inorg Chem; 2005 Oct; 10(6):688-95. PubMed ID: 16187072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved diffraction of antithrombin crystals grown in microgravity.
    Wardell MR; Skinner R; Carter DC; Twigg PD; Abrahams JP
    Acta Crystallogr D Biol Crystallogr; 1997 Sep; 53(Pt 5):622-5. PubMed ID: 11541739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic quail eye development in microgravity.
    Barrett JE; Wells DC; Paulsen AQ; Conrad GW
    J Appl Physiol (1985); 2000 May; 88(5):1614-22. PubMed ID: 10797121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR.
    Orban JI; Piert SJ; Guryeva TS; Hester PY
    J Gravit Physiol; 1999 Oct; 6(2):33-41. PubMed ID: 11543084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the three-dimensional structures of a human Bence-Jones dimer crystallized on Earth and aboard US Space Shuttle Mission STS-95.
    Terzyan SS; Bourne CR; Ramsland PA; Bourne PC; Edmundson AB
    J Mol Recognit; 2003; 16(2):83-90. PubMed ID: 12720277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein crystal growth in microgravity.
    DeLucas LJ; Smith CD; Smith HW; Vijay-Kumar S; Senadhi SE; Ealick SE; Carter DC; Snyder RS; Weber PC; Salemme FR
    Science; 1989 Nov; 246(4930):651-4. PubMed ID: 2510297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible mechanism of microgravity impact on Carausius morosus ontogenesis.
    Ushakov IA; Alpatov AM
    Adv Space Res; 1992; 12(1):153-5. PubMed ID: 11536952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments on embryos in space: an overview.
    Bellairs R
    Adv Space Res; 1994; 14(8):179-87. PubMed ID: 11537916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The centriole-centrosome complex is affected by microgravity during cell division and in cilia of sea urchin embryos: results from space flight experiments.
    Schatten H; Chakrabarti A; Taylor M; Crosser M; Mitchell K
    Microsc Microanal; 1998; 4 Suppl 2():1132-3. PubMed ID: 12143890
    [No Abstract]   [Full Text] [Related]  

  • 17. Microgravity (STS-90 Neurolab-Mission) influences synapse formation in a vestibular nucleus of fish brain.
    Anken RH; Ibsch M; Rahmann H
    Adv Space Res; 2002; 30(4):843-7. PubMed ID: 12530421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological features of the inertial mass in statocysts of the terrestrial gastropods Helix lucorum and Pomatias rivulare exposed to microgravity.
    Gorgiladze GI
    Dokl Biol Sci; 2010; 433():271-4. PubMed ID: 20711875
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative analysis of thaumatin crystals grown on earth and in microgravity.
    Ng JD; Lorber B; Giege R; Koszelak S; Day J; Greenwood A; McPherson A
    Acta Crystallogr D Biol Crystallogr; 1997 Nov; 53(Pt 6):724-33. PubMed ID: 11540583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microgravity on the crystal quality of a collagen-like polypeptide.
    Berisio R; Vitagliano L; Sorrentino G; Carotenuto L; Piccolo C; Mazzarella L; Zagari A
    Acta Crystallogr D Biol Crystallogr; 2000 Jan; 56(Pt 1):55-61. PubMed ID: 10666627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.