These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11007755)

  • 1. Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis.
    Wang HB; Li H; Shi FD; Chambers BJ; Link H; Ljunggren HG
    Int Immunol; 2000 Oct; 12(10):1381-8. PubMed ID: 11007755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.
    Balasa B; Deng C; Lee J; Bradley LM; Dalton DK; Christadoss P; Sarvetnick N
    J Exp Med; 1997 Aug; 186(3):385-91. PubMed ID: 9236190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals.
    Shi FD; Bai XF; Li HL; Huang YM; Van der Meide PH; Link H
    Clin Exp Immunol; 1998 Mar; 111(3):506-12. PubMed ID: 9528890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection of inactive Bordetella pertussis and complete Freund's adjuvant with Torpedo californica AChR increases the occurrence of experimental autoimmune myasthenia gravis in C57BL/6 mice.
    Maruta T; Oshima M; Mosier DR; Atassi MZ
    Autoimmunity; 2017 Aug; 50(5):293-305. PubMed ID: 28548588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis.
    Goluszko E; Deng C; Poussin MA; Christadoss P
    J Neuroimmunol; 2002 Jan; 122(1-2):85-93. PubMed ID: 11777546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental autoimmune myasthenia gravis induction in B cell-deficient mice.
    Li H; Shi FD; He B; Bakheit M; Wahren B; Berglöf A; Sandstedt K; Link H
    Int Immunol; 1998 Sep; 10(9):1359-65. PubMed ID: 9786435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
    Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S
    Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis.
    Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H
    J Immunol; 1999 Apr; 162(7):3775-81. PubMed ID: 10201893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.
    Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P
    Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease.
    Moiola L; Galbiati F; Martino G; Amadio S; Brambilla E; Comi G; Vincent A; Grimaldi LM; Adorini L
    Eur J Immunol; 1998 Aug; 28(8):2487-97. PubMed ID: 9710226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis.
    Ostlie NS; Karachunski PI; Wang W; Monfardini C; Kronenberg M; Conti-Fine BM
    J Immunol; 2001 Apr; 166(8):4853-62. PubMed ID: 11290761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK.
    Küçükerden M; Huda R; Tüzün E; Yılmaz A; Skriapa L; Trakas N; Strait RT; Finkelman FD; Kabadayı S; Zisimopoulou P; Tzartos S; Christadoss P
    J Neuroimmunol; 2016 Jun; 295-296():84-92. PubMed ID: 27235354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice.
    Oshima M; Iida-Klein A; Maruta T; Deitiker PR; Atassi MZ
    Autoimmunity; 2017 Sep; 50(6):346-353. PubMed ID: 28850269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1.
    Yang H; Tüzün E; Alagappan D; Yu X; Scott BG; Ischenko A; Christadoss P
    J Immunol; 2005 Aug; 175(3):2018-25. PubMed ID: 16034147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.