BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 11007868)

  • 1. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of active hair bundle motion in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2002 Jan; 22(1):44-52. PubMed ID: 11756487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation and adaptation of transducer currents in turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1989 Dec; 419():405-34. PubMed ID: 2621635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.
    Ricci A
    J Neurophysiol; 2002 Apr; 87(4):1738-48. PubMed ID: 11929895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells.
    Ricci AJ; Wu YC; Fettiplace R
    J Neurosci; 1998 Oct; 18(20):8261-77. PubMed ID: 9763471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
    Beurg M; Nam JH; Crawford A; Fettiplace R
    Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The actions of calcium on the mechano-electrical transducer current of turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1991 Mar; 434():369-98. PubMed ID: 1708822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation.
    Caprara GA; Mecca AA; Wang Y; Ricci AJ; Peng AW
    J Neurosci; 2019 Nov; 39(46):9098-9106. PubMed ID: 31578232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of caged calcium release on the adaptation of the transduction current in chick hair cells.
    Kimitsuki T; Ohmori H
    J Physiol; 1992 Dec; 458():27-40. PubMed ID: 1284566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells.
    Schnee ME; Ricci AJ
    J Physiol; 2003 Jun; 549(Pt 3):697-717. PubMed ID: 12740421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph.
    Ricci AJ; Fettiplace R
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):159-73. PubMed ID: 9481679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanical properties of ciliary bundles of turtle cochlear hair cells.
    Crawford AC; Fettiplace R
    J Physiol; 1985 Jul; 364():359-79. PubMed ID: 4032304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.
    Kennedy HJ; Evans MG; Crawford AC; Fettiplace R
    J Neurosci; 2006 Mar; 26(10):2757-66. PubMed ID: 16525055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transduction channel filter in auditory hair cells.
    Ricci AJ; Kennedy HJ; Crawford AC; Fettiplace R
    J Neurosci; 2005 Aug; 25(34):7831-9. PubMed ID: 16120785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
    Bormuth V; Barral J; Joanny JF; Jülicher F; Martin P
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7185-90. PubMed ID: 24799674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    J Neurosci; 2016 Jan; 36(2):336-49. PubMed ID: 26758827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.
    Kennedy HJ; Evans MG; Crawford AC; Fettiplace R
    Nat Neurosci; 2003 Aug; 6(8):832-6. PubMed ID: 12872124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
    Meenderink SW; Quiñones PM; Bozovic D
    J Neurosci; 2015 Oct; 35(43):14457-66. PubMed ID: 26511238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells.
    Assad JA; Hacohen N; Corey DP
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2918-22. PubMed ID: 2468161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.