These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1100829)
1. Growth inhibitory properties of aromatic alpha-ketoaldehydes toward bacteria and yeast. Comparison of inhibition and glyoxalase I activity. Vander Jagt DL J Med Chem; 1975 Nov; 18(11):1155-8. PubMed ID: 1100829 [TBL] [Abstract][Full Text] [Related]
2. Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism. Vander Jagt DL; Daub E; Krohn JA; Han LP Biochemistry; 1975 Aug; 14(16):3669-75. PubMed ID: 240387 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of 2-ketoaldehydes in mold: purification and characterization of glyoxalase I from Aspergillus niger. Inoue Y; Rhee H; Watanabe K; Murata K; Kimura A J Biochem; 1987 Sep; 102(3):583-9. PubMed ID: 3123469 [TBL] [Abstract][Full Text] [Related]
4. Excretion of glutathione by methylglyoxal-resistant Escherichia coli. Murata K; Tani K; Kato J; Chibata I J Gen Microbiol; 1980 Oct; 120(2):545-7. PubMed ID: 7014775 [TBL] [Abstract][Full Text] [Related]
5. Purification and kinetic study of glyoxalase-I from rat liver, erythrocytes, brain and kidney. Han LP; Davison LM; Vander Jagt DL Biochim Biophys Acta; 1976 Sep; 445(2):486-99. PubMed ID: 953039 [TBL] [Abstract][Full Text] [Related]
6. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. MacLean MJ; Ness LS; Ferguson GP; Booth IR Mol Microbiol; 1998 Feb; 27(3):563-71. PubMed ID: 9489668 [TBL] [Abstract][Full Text] [Related]
7. Glyoxalase 2 deficiency in the erythrocytes of a horse: 1H NMR studies of enzyme kinetics and transport of S-lactoylglutathione. Rae C; Board PG; Kuchel PW Arch Biochem Biophys; 1991 Dec; 291(2):291-9. PubMed ID: 1952942 [TBL] [Abstract][Full Text] [Related]
8. alpha-Ketoaldehydes, specific catalysts for thiol formation from levamisole. Van Belle H; Janssen PA Biochem Pharmacol; 1979 Apr; 28(8):1313-8. PubMed ID: 36096 [No Abstract] [Full Text] [Related]
9. Nonstereospecific substrate usage by glyoxalase I. Griffis CE; Ong LH; Buettner L; Creighton DJ Biochemistry; 1983 Jun; 22(12):2945-51. PubMed ID: 6347254 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobic binding is not an independent stereochemical determinant in the yeast glyoxalase I reaction. Creighton DJ; Weiner A; Buettner L Biophys Chem; 1980 Apr; 11(2):265-9. PubMed ID: 6989412 [TBL] [Abstract][Full Text] [Related]
12. Deuterium isotope effects on the product partitioning of fluoromethylglyoxal by glyoxalase I. Proof of a proton transfer mechanism. Chari RV; Kozarich JW J Biol Chem; 1981 Oct; 256(19):9785-8. PubMed ID: 7024272 [TBL] [Abstract][Full Text] [Related]
13. [Role of glyoxalases and methylglyoxal in cell proliferation and differentiation]. Piskorska D; Grabowska-Bochenek R Postepy Hig Med Dosw; 1995; 49(3):433-44. PubMed ID: 8657641 [TBL] [Abstract][Full Text] [Related]
14. Role of rpoS in the regulation of glyoxalase III in Escherichia coli. Benov L; Sequeira F; Beema AF Acta Biochim Pol; 2004; 51(3):857-60. PubMed ID: 15448747 [TBL] [Abstract][Full Text] [Related]
15. Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana. Hoque TS; Uraji M; Hoque MA; Nakamura Y; Murata Y J Biochem Mol Toxicol; 2017 Jul; 31(7):. PubMed ID: 28117932 [TBL] [Abstract][Full Text] [Related]
16. Involvement of glutathione in the inhibition of sea urchin egg mitosis by phenyl glyoxal. Amy CM; Rebhun LI J Cell Physiol; 1979 Jul; 100(1):187-98. PubMed ID: 572830 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of methylglyoxal towards rat enterocytes and colonocytes. Baskaran S; Balasubramanian KA Biochem Int; 1990; 21(1):165-74. PubMed ID: 1696817 [TBL] [Abstract][Full Text] [Related]
18. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Thornalley PJ Chem Biol Interact; 1998 Apr; 111-112():137-51. PubMed ID: 9679550 [TBL] [Abstract][Full Text] [Related]
19. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily. Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092 [TBL] [Abstract][Full Text] [Related]
20. Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Misra K; Banerjee AB; Ray S; Ray M Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):999-1003. PubMed ID: 7848303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]