These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11008432)

  • 1. Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation.
    Stites EC; Abbas JJ
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1287-92. PubMed ID: 11008432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural network control of functional neuromuscular stimulation systems: computer simulation studies.
    Abbas JJ; Chizeck HJ
    IEEE Trans Biomed Eng; 1995 Nov; 42(11):1117-27. PubMed ID: 7498916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation.
    Riess J; Abbas JJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):326-30. PubMed ID: 11561670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation.
    Riess J; Abbas JJ
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):42-52. PubMed ID: 10779107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.
    Ajoudani A; Erfanian A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding mode closed-loop control of FES: controlling the shank movement.
    Jezernik S; Wassink RG; Keller T
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
    Neptune RR
    Phys Med Rehabil Clin N Am; 2000 May; 11(2):417-34, viii. PubMed ID: 10810769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental studies on muscle fatigue of human limb motion with FNS].
    Wu H; Zhou Z; Xiong S; Yan D; Zhang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):323-5. PubMed ID: 11450566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.
    Padhi R; Bhardhwaj JR
    Comput Methods Programs Biomed; 2009 Jun; 94(3):207-22. PubMed ID: 19215995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Neuromuscular Stimulation for articular angle control with an Inverse Dynamics Model tuned by a neural network.
    Yoshida N; Tomita Y; Honda S; Saitoh E
    Ergonomics; 2002 Jul; 45(9):649-62. PubMed ID: 12217086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of functional neuromuscular stimulation assisted sit-to-stand movements.
    Gillette JC; Hartman EC
    Biomed Sci Instrum; 2003; 39():300-5. PubMed ID: 12724910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.
    Ferrante S; Pedrocchi A; IannĂ² M; De Momi E; Ferrarin M; Ferrigno G
    Funct Neurol; 2004; 19(4):243-52. PubMed ID: 15776793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of FNS control systems: software development and sensor characterization.
    Riess J; Abbas JJ
    Biomed Sci Instrum; 1997; 33():197-202. PubMed ID: 9731359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling and simulation of the postural control loop. Part III.
    Agarwal GC; Gottlieb GL
    Crit Rev Biomed Eng; 1984; 12(1):49-93. PubMed ID: 6394213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinematic theory of rapid human movement. Part IV: a formal mathematical proof and new insights.
    Plamondon R; Feng C; Woch A
    Biol Cybern; 2003 Aug; 89(2):126-38. PubMed ID: 12905041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles.
    Kobravi HR; Erfanian A
    J Neural Eng; 2009 Aug; 6(4):046007. PubMed ID: 19587395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural arm control following cervical spinal cord injury.
    Perreault EJ; Crago PE; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):369-77. PubMed ID: 12018650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.