BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 11008766)

  • 21. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument.
    Wang GR; Sas I; Jiang H; Janzen WP; Hodge CN
    Electrophoresis; 2008 Mar; 29(6):1253-63. PubMed ID: 18297657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting deviations from pure EOF during CE separations.
    O'Grady JF; Noonan KY; McDonnell P; Mancuso AJ; Frederick KA
    Electrophoresis; 2007 Jul; 28(14):2385-90. PubMed ID: 17632806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study on cucurbit[ 7] uril-mediated capillary electrophoresis].
    Wei F; Liu S; Xu L; Wu C; Feng Y
    Se Pu; 2004 Sep; 22(5):476-8. PubMed ID: 15706933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel electrophoretic acetonitrile-based stacking for sensitive monitoring of the antiepileptic drug perampanel in human serum.
    Tůma P; Bursová M; Sommerová B; Horsley R; Čabala R; Hložek T
    J Pharm Biomed Anal; 2018 Oct; 160():368-373. PubMed ID: 30121554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research on the separation behavior of acidic drugs in capillary electrophoresis with reversed direction of electroosmotic flow].
    Lin M; Feng M; Zhang Z; An D; Fan G
    Se Pu; 1998 Sep; 16(5):383-5. PubMed ID: 11498915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis.
    Williams BA; Vigh G
    Anal Chem; 1997 Nov; 69(21):4445-51. PubMed ID: 21639176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indirect amperometric measurement of electroosmotic flow rates and effective mobilities in microchip capillary electrophoresis.
    Wang W; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Feb; 1142(2):209-13. PubMed ID: 17222859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rugged gap reactor device for postcolumn fluorescence detection in capillary electrophoresis.
    Wei H; Li SF
    Anal Chem; 1998 Dec; 70(23):5097-102. PubMed ID: 21644687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large volume sample stacking of positively chargeable analytes in capillary zone electrophoresis without polarity switching: use of low reversed electroosmotic flow induced by a cationic surfactant at acidic pH.
    Quirino JP; Terabe S
    Electrophoresis; 2000 Jan; 21(2):355-9. PubMed ID: 10675015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A universal concept for stacking neutral analytes in micellar capillary electrophoresis.
    Palmer J; Munro NJ; Landers JP
    Anal Chem; 1999 May; 71(9):1679-87. PubMed ID: 21662807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis.
    Wei W; Xue G; Yeung ES
    Anal Chem; 2002 Mar; 74(5):934-40. PubMed ID: 11924995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coelectroosmotic capillary electrophoresis of phenolic acids and derivatized amino acids using N,N-dimethylacrylamide-ethylpyrrolidine methacrylate physically coated capillaries.
    Carrasco-Pancorbo A; Cifuentes A; Cortacero-Ramírez S; Segura-Carretero A; Fernández-Gutiérrez A
    Talanta; 2007 Jan; 71(1):397-405. PubMed ID: 19071318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of electroosmotic flow and prevention of wall adsorption in capillary zone electrophoresis using zwitterionic surfactants.
    Yeung KK; Lucy CA
    Anal Chem; 1997 Sep; 69(17):3435-41. PubMed ID: 21639265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring of the electroosmotic flow of ionic liquid solutions in non-aqueous media using thermal marks.
    Seiman A; Vaher M; Kaljurand M
    J Chromatogr A; 2008 May; 1189(1-2):266-73. PubMed ID: 18221941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2011 Nov; 32(22):3286-94. PubMed ID: 22102501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of flow velocity and inference of liquid viscosity in a microfluidic channel by fluorescence photobleaching.
    Carroll NJ; Jensen KH; Parsa S; Holbrook NM; Weitz DA
    Langmuir; 2014 Apr; 30(16):4868-74. PubMed ID: 24730625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative in vivo monitoring of primary amines in rat caudate nucleus using microdialysis coupled by a flow-gated interface to capillary electrophoresis with laser-induced fluorescence detection.
    Lada MW; Kennedy RT
    Anal Chem; 1996 Sep; 68(17):2790-7. PubMed ID: 8794915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry.
    Bendahl L; Hansen SH; Gammelgaard B
    Electrophoresis; 2001 Aug; 22(12):2565-73. PubMed ID: 11519960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.