These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11008828)

  • 1. In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz.
    Chaffaï S; Padilla F; Berger G; Laugier P
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1281-9. PubMed ID: 11008828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography.
    Laugier P; Droin P; Laval-Jeantet AM; Berger G
    Bone; 1997 Feb; 20(2):157-65. PubMed ID: 9028541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):602-8. PubMed ID: 11370374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in Calcaneus in vivo for the ultrasonic evaluation of osteoporosis.
    Jiang YQ; Liu CC; Li RY; Wang WP; Ding H; Qi Q; Ta D; Dong J; Wang WQ
    Ultrasound Med Biol; 2014 Jun; 40(6):1307-17. PubMed ID: 24642217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model.
    Jenson F; Padilla F; Laugier P
    Ultrasound Med Biol; 2003 Mar; 29(3):455-64. PubMed ID: 12706197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the Human Calcaneus In Vivo Using Ultrasonic Backscatter Spectral Centroid Shift.
    Liu C; Xu F; Ta D; Tang T; Jiang Y; Dong J; Wang WP; Liu X; Wang Y; Wang WQ
    J Ultrasound Med; 2016 Oct; 35(10):2197-208. PubMed ID: 27562978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure.
    Chaffaî S; Peyrin F; Nuzzo S; Porcher R; Berger G; Laugier P
    Bone; 2002 Jan; 30(1):229-37. PubMed ID: 11792590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone.
    Ta D; Wang W; Huang K; Wang Y; Le LH
    J Acoust Soc Am; 2008 Dec; 124(6):4083-90. PubMed ID: 19206830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation.
    Langton CM; Njeh CF; Hodgskinson R; Currey JD
    Bone; 1996 Jun; 18(6):495-503. PubMed ID: 8805988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro ultrasound measurement at the human femur.
    Padilla F; Akrout L; Kolta S; Latremouille C; Roux C; Laugier P
    Calcif Tissue Int; 2004 Nov; 75(5):421-30. PubMed ID: 15599500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear attenuation and dispersion in human calcaneus in vitro: statistical validation and relationships to microarchitecture.
    Wear KA
    J Acoust Soc Am; 2015 Mar; 137(3):1126-33. PubMed ID: 25786928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of ultrasound with cancellous bone.
    McKelvie ML; Palmer SB
    Phys Med Biol; 1991 Oct; 36(10):1331-40. PubMed ID: 1745661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound.
    Cheng XG; Nicholson PH; Boonen S; Lowet G; Brys P; Aerssens J; Van der Perre G; Dequeker J
    J Bone Miner Res; 1997 Oct; 12(10):1721-8. PubMed ID: 9333134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):384-90. PubMed ID: 18334344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz.
    Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vitro study of ultrasonic bone densitometry using dissected calcaneus].
    Hamanaka Y; Yamamoto I; Imamoto K; Takada M; Morita R
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Mar; 58(4):137-41. PubMed ID: 9584456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal changes in mandibular bone mineral density compared with hip bone mineral density and quantitative ultrasound at calcaneus and hand phalanges.
    Drozdzowska B; Pluskiewicz W
    Br J Radiol; 2002 Sep; 75(897):743-7. PubMed ID: 12200243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the measurement of broadband ultrasonic attenuation in trabecular bone.
    Strelitzki R; Evans JA
    Ultrasonics; 1996 Dec; 34(8):785-91. PubMed ID: 9010461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of calcaneal ultrasonic assessment to the evaluation of postmenopausal and glucocorticoid-induced osteoporosis.
    Blanckaert F; Cortet B; Coquerelle P; Flipo RM; Duquesnoy B; Marchandise X; Delcambre B
    Rev Rhum Engl Ed; 1997 May; 64(5):305-13. PubMed ID: 9190004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.