These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11008828)

  • 21. Comparison of ultrasound and dual energy X-ray absorptiometry measurements in the calcaneus.
    Kang C; Speller R
    Br J Radiol; 1998 Aug; 71(848):861-7. PubMed ID: 9828799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency dependence of average phase shift from human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2009 Dec; 126(6):3291-300. PubMed ID: 20000943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mandibular bone mineral density measured using dual-energy X-ray absorptiometry: relationship to hip bone mineral density and quantitative ultrasound at calcaneus and hand phalanges.
    Pluskiewicz W; Tarnawska B; Drozdzowska B
    Br J Radiol; 2000 Mar; 73(867):288-92. PubMed ID: 10817045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound attenuation imaging in the os calcis: an improved method.
    Laugier P; Berger G; Giat P; Bonnin-Fayet P; Laval-Jeantet M
    Ultrason Imaging; 1994 Apr; 16(2):65-76. PubMed ID: 7974909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency dependence of the ultrasonic power reflected from the water-tissue interface of human cancellous bone in vitro.
    Hoffmeister BK; Main EN; Newman WR; Ebron SC; Huang J
    J Acoust Soc Am; 2022 Oct; 152(4):2082. PubMed ID: 36319263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.
    Strelitzki R; Paech V; Nicholson PH
    Med Eng Phys; 1999 May; 21(4):215-23. PubMed ID: 10514039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dependence of time-domain speed-of-sound measurements on center frequency, bandwidth, and transit-time marker in human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2007 Jul; 122(1):636-44. PubMed ID: 17614520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-megahertz ultrasonic properties of bovine cancellous bone.
    Hoffmeister BK; Whitten SA; Rho JY
    Bone; 2000 Jun; 26(6):635-42. PubMed ID: 10831936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results.
    Wear KA; Laib A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):979-86. PubMed ID: 12952089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone.
    Wear KA
    J Acoust Soc Am; 2001 Mar; 109(3):1213-8. PubMed ID: 11303934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of bone mineral density and quantitative ultrasound of the calcaneus: site-matched correlation and discrimination of axial BMD status.
    Langton CM; Langton DK
    Br J Radiol; 2000 Jan; 73(865):31-5. PubMed ID: 10721317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of temperature on ultrasonic properties of the calcaneus in situ.
    Nicholson PH; Bouxsein ML
    Osteoporos Int; 2002 Nov; 13(11):888-92. PubMed ID: 12415436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus.
    Trebacz H; Natali A
    Osteoporos Int; 1999; 9(2):99-105. PubMed ID: 10367035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of cancellous bone microstructure on ultrasonic attenuation: a theoretical prediction.
    Liu J; Lan L; Zhou J; Yang Y
    Biomed Eng Online; 2019 Oct; 18(1):103. PubMed ID: 31653267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does quantitative ultrasound imaging enhance precision and discrimination?
    Frost ML; Blake GM; Fogelman I
    Osteoporos Int; 2000; 11(5):425-33. PubMed ID: 10912845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasound parametric imaging of the calcaneus: in vivo results with a new device.
    Laugier P; Fournier B; Berger G
    Calcif Tissue Int; 1996 May; 58(5):326-31. PubMed ID: 8661966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of ultrasonic attenuation in a bone using coded excitation.
    Nowicki A; Litniewski J; Secomski W; Lewin PA; Trots I
    Ultrasonics; 2003 Nov; 41(8):615-21. PubMed ID: 14585473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation.
    Wear KA
    J Acoust Soc Am; 2000 Jun; 107(6):3474-9. PubMed ID: 10875391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dependence of broadband ultrasound attenuation on phase interference in thin plates of variable thickness and curvature: a comparison of experimental measurement and computer simulation.
    Alomari AH; Wille ML; Langton CM
    Proc Inst Mech Eng H; 2018 May; 232(5):468-478. PubMed ID: 29589802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.