These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11009446)

  • 21. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F; Dusting GJ
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta.
    Ferrer M; Marín J; Encabo A; Alonso MJ; Balfagón G
    Gen Pharmacol; 1999 Jul; 33(1):35-41. PubMed ID: 10428014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO.
    Najibi S; Cohen RA
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H805-11. PubMed ID: 7573521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta.
    Qiu Y; Quilley J
    Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats.
    Kimura K; Nishio I
    Scand J Clin Lab Invest; 1999 May; 59(3):199-204. PubMed ID: 10400164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of potassium channels in the nitric oxide-independent vasodilator response to acetylcholine.
    Dabisch PA; Liles JT; Taylor JT; Sears BW; Saenz R; Kadowitz PJ
    Pharmacol Res; 2004 Mar; 49(3):207-15. PubMed ID: 14726215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses to bradykinin are mediated by NO-independent mechanisms in the rat hindlimb vascular bed.
    Dabisch PA; Kerut EK; Liles JT; Wien G; Smith M; Patterson M; McCoul ED; Sears BW; Saenz R; Kadowitz PJ
    Pharmacol Res; 2004 Dec; 50(6):575-84. PubMed ID: 15501695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role for endothelium-derived hyperpolarizing factor in vascular tone in rat mesenteric and hindlimb circulations in vivo.
    Parkington HC; Chow JA; Evans RG; Coleman HA; Tare M
    J Physiol; 2002 Aug; 542(Pt 3):929-37. PubMed ID: 12154190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo regulation of endothelium-dependent vasodilation in the rat renal circulation and the effect of streptozotocin-induced diabetes.
    Edgley AJ; Tare M; Evans RG; Skordilis C; Parkington HC
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R829-39. PubMed ID: 18635451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative effects of L-NOARG and L-NAME on basal blood flow and ACh-induced vasodilatation in rat diaphragmatic microcirculation.
    Chang HY; Chen CW; Hsiue TR
    Br J Pharmacol; 1997 Jan; 120(2):326-32. PubMed ID: 9117127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 15-Lipoxygenase metabolites contribute to age-related reduction in acetylcholine-induced hypotension in rabbits.
    Aggarwal NT; Gauthier KM; Campbell WB
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H89-96. PubMed ID: 18456739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 1-Ethyl-2-benzimidazolinone stimulates endothelial K(Ca) channels and nitric oxide formation in rat mesenteric vessels.
    Adeagbo AS
    Eur J Pharmacol; 1999 Aug; 379(2-3):151-9. PubMed ID: 10497901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of calcium-sensitive K(+) channels and nitric oxide in in vivo coronary vasodilation from enhanced perfusion pulsatility.
    Paolocci N; Pagliaro P; Isoda T; Saavedra FW; Kass DA
    Circulation; 2001 Jan; 103(1):119-24. PubMed ID: 11136696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery.
    Jiang F; Li CG; Rand MJ
    Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BK(Ca) channels compensate for loss of NOS-dependent coronary artery relaxation in cardiomyopathy.
    Clark SG; Fuchs LC
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2598-603. PubMed ID: 11087210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endothelial mechanisms underlying responses to acetylcholine in the horse deep dorsal penile vein.
    Martínez AC; Prieto D; Hernández M; Rivera L; Recio P; García-Sacristán A; Benedito S
    Eur J Pharmacol; 2005 May; 515(1-3):150-9. PubMed ID: 15894308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary n-3 polyunsaturated fatty acids and endothelium dysfunction induced by lysophosphatidylcholine in Syrian hamster aorta.
    Lucas A; Grynberg A; Lacour B; Goirand F
    Metabolism; 2008 Feb; 57(2):233-40. PubMed ID: 18191054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.