These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11009475)

  • 1. Dynamics of action potential head-tail interaction during reentry in cardiac tissue: ionic mechanisms.
    Hund TJ; Otani NF; Rudy Y
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1869-79. PubMed ID: 11009475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow [Na
    Krogh-Madsen T; Christini DJ
    Chaos; 2017 Sep; 27(9):093907. PubMed ID: 28964146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of damped oscillations during reentry: a new approach to evaluate cardiac restitution.
    Munteanu A; Kondratyev AA; Kucera JP
    Biophys J; 2008 Feb; 94(3):1094-109. PubMed ID: 17921218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional block and reentry of cardiac excitation: a model study.
    Quan W; Rudy Y
    Circ Res; 1990 Feb; 66(2):367-82. PubMed ID: 2297808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional increase of extracellular potassium leads to electrical instability and reentry occurrence through the spatial heterogeneity of APD restitution.
    Sidorov VY; Uzelac I; Wikswo JP
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H209-20. PubMed ID: 21536842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue.
    Chen X; Fenton FH; Gray RA
    Heart Rhythm; 2005 Aug; 2(8):851-9. PubMed ID: 16051124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of arrhythmias in myocardial ischemia and infarction.
    Lazzara R; Scherlag BJ
    Am J Cardiol; 1988 Jan; 61(2):20A-26A. PubMed ID: 2447770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study.
    Qu Z; Karagueuzian HS; Garfinkel A; Weiss JN
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1310-21. PubMed ID: 14630634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cardiac vulnerable period and reentrant arrhythmias: targets of anti- and proarrhythmic processes.
    Starmer CF
    Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):445-54. PubMed ID: 9058848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reperfusion arrhythmias in isolated perfused pig hearts. Inhomogeneities in extracellular potassium, ST and TQ potentials, and transmembrane action potentials.
    Coronel R; Wilms-Schopman FJ; Opthof T; Cinca J; Fiolet JW; Janse MJ
    Circ Res; 1992 Nov; 71(5):1131-42. PubMed ID: 1394875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiral waves in a computer model of cardiac excitation.
    Abildskov JA; Lux RL
    Pacing Clin Electrophysiol; 1994 May; 17(5 Pt 1):944-52. PubMed ID: 7517529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of phase-2 reentry and repolarization dispersion on epicardial and transmural ionic heterogeneity: a simulation study.
    Maoz A; Christini DJ; Krogh-Madsen T
    Europace; 2014 Mar; 16(3):458-65. PubMed ID: 24569901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study of cellular electric properties in heart failure.
    Priebe L; Beuckelmann DJ
    Circ Res; 1998 Jun; 82(11):1206-23. PubMed ID: 9633920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study of Early Afterdepolarization-Mediated Fibrillation in Two Mathematical Models for Human Ventricular Cells.
    Zimik S; Vandersickel N; Nayak AR; Panfilov AV; Pandit R
    PLoS One; 2015; 10(6):e0130632. PubMed ID: 26125185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous termination of reentry after one cycle or short nonsustained runs. Role of oscillations and excess dispersion of refractoriness.
    Frame LH; Rhee EK
    Circ Res; 1991 Feb; 68(2):493-502. PubMed ID: 1991352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of alterations in refractoriness and conduction in the genesis of reentrant arrhythmias. Implications for antiarrhythmic effects of class III drugs.
    Wit AL; Coromilas J
    Am J Cardiol; 1993 Nov; 72(16):3F-12F. PubMed ID: 8237828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistability of reentrant rhythms in an ionic model of a two-dimensional annulus of cardiac tissue.
    Comtois P; Vinet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051927. PubMed ID: 16383665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop.
    Johnson CR; Barr RC
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10):1064-74. PubMed ID: 14521659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.