These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11010858)

  • 1. Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation.
    Narendranath NV; Thomas KC; Ingledew WM
    Appl Environ Microbiol; 2000 Oct; 66(10):4187-92. PubMed ID: 11010858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lactobacilli on yeast-catalyzed ethanol fermentations.
    Narendranath NV; Hynes SH; Thomas KC; Ingledew WM
    Appl Environ Microbiol; 1997 Nov; 63(11):4158-63. PubMed ID: 9361399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash.
    Narendranath NV; Power R
    J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation.
    Hynes SH; Kjarsgaard DM; Thomas KC; Ingledew WM
    J Ind Microbiol Biotechnol; 1997 Apr; 18(4):284-91. PubMed ID: 9172435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation.
    Chang IS; Kim BH; Shin PK
    Appl Environ Microbiol; 1997 Jan; 63(1):1-6. PubMed ID: 8979332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash.
    Thomas KC; Hynes SH; Ingledew WM
    J Appl Microbiol; 2001 May; 90(5):819-28. PubMed ID: 11348444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of whitening agents containing carbamide peroxide on cariogenic bacteria.
    Bentley CD; Leonard RH; Crawford JJ
    J Esthet Dent; 2000; 12(1):33-7. PubMed ID: 11323831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae.
    Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY
    Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of low lysine and high arginine concentrations to efficient ethanolic fermentation of wheat mash.
    Thomas KC; Ingledew WM
    Can J Microbiol; 1992 Jul; 38(7):626-34. PubMed ID: 1393832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in steady state on introduction of a Lactobacillus contaminant to a continuous culture ethanol fermentation.
    Bayrock D; Ingledew WM
    J Ind Microbiol Biotechnol; 2001 Jul; 27(1):39-45. PubMed ID: 11598809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes.
    Thomas KC; Ingledew WM
    Appl Environ Microbiol; 1990 Jul; 56(7):2046-50. PubMed ID: 2202254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy and Safe preparations of (diacetoxyiodo) arenes from iodoarenes, with urea-hydrogen peroxide adduct (UHP) as the oxidant and the fully interpreted (1)H- and (13)C-NMR spectra of the products.
    Zielinska A; Skulski L
    Molecules; 2005 Jan; 10(1):190-4. PubMed ID: 18007286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic actions of nisin, sublethal ultrahigh pressure, and reduced temperature on bacteria and yeast.
    ter Steeg PF; Hellemons JC; Kok AE
    Appl Environ Microbiol; 1999 Sep; 65(9):4148-54. PubMed ID: 10473428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin G.
    Bayrock DP; Thomas KC; Ingledew WM
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):498-502. PubMed ID: 12743751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Lactobacillus biofilm growth in fuel ethanol fermentations by Bacillus.
    Saunders LP; Bischoff KM; Bowman MJ; Leathers TD
    Bioresour Technol; 2019 Jan; 272():156-161. PubMed ID: 30336397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production.
    Narendranath NV; Power R
    Appl Environ Microbiol; 2005 May; 71(5):2239-43. PubMed ID: 15870306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity?
    Bayrock DP; Ingledew WM
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):362-8. PubMed ID: 15257443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial activity of 10% carbamide peroxide bleaching agents.
    Gurgan S; Bolay S; Alaçam R
    J Endod; 1996 Jul; 22(7):356-7. PubMed ID: 8935060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate.
    Kennes C; Veiga MC; Dubourguier HC; Touzel JP; Albagnac G; Naveau H; Nyns EJ
    Appl Environ Microbiol; 1991 Apr; 57(4):1046-51. PubMed ID: 2059031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei.
    Moon SK; Lee J; Song H; Cho JH; Choi GW; Seung D
    Bioprocess Biosyst Eng; 2013 May; 36(5):547-54. PubMed ID: 22907566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.