BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11010881)

  • 1. Cold shock and its effect on ribosomes and thermal tolerance in Listeria monocytogenes.
    Bayles DO; Tunick MH; Foglia TA; Miller AJ
    Appl Environ Microbiol; 2000 Oct; 66(10):4351-5. PubMed ID: 11010881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced ribosomal thermal denaturation in Listeria monocytogenes following osmotic and heat shocks.
    Stephens PJ; Jones MV
    FEMS Microbiol Lett; 1993 Jan; 106(2):177-82. PubMed ID: 8454183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold shock induction of thermal sensitivity in Listeria monocytogenes.
    Miller AJ; Bayles DO; Eblen BS
    Appl Environ Microbiol; 2000 Oct; 66(10):4345-50. PubMed ID: 11010880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures.
    Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ
    Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.
    Pagán R; Condón S; Sala FJ
    Appl Environ Microbiol; 1997 Aug; 63(8):3225-32. PubMed ID: 9251209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential stability of E. coli ribosomal particles and free RNA towards thermal degradation studied by microcalorimetry.
    Bonincontro A; Cinelli S; Mengoni M; Onori G; Risuleo G; Santucci A
    Biophys Chem; 1998 Nov; 75(2):97-103. PubMed ID: 9857479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes.
    Hingston P; Chen J; Allen K; Truelstrup Hansen L; Wang S
    PLoS One; 2017; 12(6):e0180123. PubMed ID: 28662112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis.
    Phan-Thanh L; Gormon T
    Electrophoresis; 1995 Mar; 16(3):444-50. PubMed ID: 7607179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermotolerance of Listeria monocytogenes and Salmonella typhimurium after sublethal heat shock.
    Bunning VK; Crawford RG; Tierney JT; Peeler JT
    Appl Environ Microbiol; 1990 Oct; 56(10):3216-9. PubMed ID: 2126703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat.
    Farber JM; Brown BE
    Appl Environ Microbiol; 1990 Jun; 56(6):1584-7. PubMed ID: 2116757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids.
    Mastronicolis SK; Boura A; Karaliota A; Magiatis P; Arvanitis N; Litos C; Tsakirakis A; Paraskevas P; Moustaka H; Heropoulos G
    Food Microbiol; 2006 Apr; 23(2):184-94. PubMed ID: 16943003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth.
    Chan YC; Boor KJ; Wiedmann M
    Appl Environ Microbiol; 2007 Oct; 73(19):6019-29. PubMed ID: 17675428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry.
    Anderson WA; Hedges ND; Jones MV; Cole MB
    J Gen Microbiol; 1991 Jun; 137(6):1419-24. PubMed ID: 1919516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage.
    Hingston PA; Truelstrup Hansen L; Pombert JF; Wang S
    Int J Food Microbiol; 2019 Oct; 306():108262. PubMed ID: 31362162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry.
    Mackey BM; Miles CA; Parsons SE; Seymour DA
    J Gen Microbiol; 1991 Oct; 137(10):2361-74. PubMed ID: 1722814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase.
    Zhu K; Bayles DO; Xiong A; Jayaswal RK; Wilkinson BJ
    Microbiology (Reading); 2005 Feb; 151(Pt 2):615-623. PubMed ID: 15699210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes.
    Jones SL; Drouin P; Wilkinson BJ; II Morse PD
    Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Listeria monocytogenes RNA helicase essential for growth and ribosomal maturation at low temperatures uses its C terminus for appropriate interaction with the ribosome.
    Netterling S; Vaitkevicius K; Nord S; Johansson J
    J Bacteriol; 2012 Aug; 194(16):4377-85. PubMed ID: 22707705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses.
    Skandamis PN; Yoon Y; Stopforth JD; Kendall PA; Sofos JN
    Food Microbiol; 2008 Apr; 25(2):294-303. PubMed ID: 18206772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.