These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11010881)

  • 21. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes.
    Edgcomb MR; Sirimanne S; Wilkinson BJ; Drouin P; Morse RD
    Biochim Biophys Acta; 2000 Jan; 1463(1):31-42. PubMed ID: 10631292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.
    Seel W; Flegler A; Zunabovic-Pichler M; Lipski A
    J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862
    [No Abstract]   [Full Text] [Related]  

  • 23. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions.
    Agoston R; Soni K; Jesudhasan PR; Russell WK; Mohácsi-Farkas C; Pillai SD
    Foodborne Pathog Dis; 2009 Nov; 6(9):1133-40. PubMed ID: 19694553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal inactivation of Listeria monocytogenes during rapid and slow heating in sous vide cooked beef.
    Hansen TB; Knøchel S
    Lett Appl Microbiol; 1996 Jun; 22(6):425-8. PubMed ID: 8695067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias.
    Giuliodori AM; Brandi A; Giangrossi M; Gualerzi CO; Pon CL
    RNA; 2007 Aug; 13(8):1355-65. PubMed ID: 17592046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli.
    El Hage A; Sbaï M; Alix JH
    Mol Gen Genet; 2001 Feb; 264(6):796-808. PubMed ID: 11254127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of pre- and post-heat shock temperature on the persistence of thermotolerance and heat shock-induced proteins in Listeria monocytogenes.
    Jørgensen F; Panaretou B; Stephens PJ; Knøchel S
    J Appl Bacteriol; 1996 Feb; 80(2):216-24. PubMed ID: 8642016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli.
    Xia B; Ke H; Shinde U; Inouye M
    J Mol Biol; 2003 Sep; 332(3):575-84. PubMed ID: 12963368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermotolerance of heat-shocked Listeria monocytogenes in milk exposed to high-temperature, short-time pasteurization.
    Bunning VK; Crawford RG; Tierney JT; Peeler JT
    Appl Environ Microbiol; 1992 Jun; 58(6):2096-8. PubMed ID: 1622288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.
    López-García P; Forterre P
    Mol Microbiol; 1999 Aug; 33(4):766-77. PubMed ID: 10447886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of heat shock on ribosome synthesis in Drosophila melanogaster.
    Bell J; Neilson L; Pellegrini M
    Mol Cell Biol; 1988 Jan; 8(1):91-5. PubMed ID: 3122028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1167-75. PubMed ID: 16028018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic structural differences between "tight couples" and Kaltschmidt-Wittmann ribosomes evidenced by dielectric spectroscopy and scanning microcalorimetry.
    Bonincontro A; Nierhaus KH; Onori G; Risuleo G
    FEBS Lett; 2001 Feb; 490(1-2):93-6. PubMed ID: 11172818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of heating rate on the thermal inactivation of Listeria monocytogenes.
    Stephens PJ; Cole MB; Jones MV
    J Appl Bacteriol; 1994 Dec; 77(6):702-8. PubMed ID: 7822230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical modelling of the heat resistance of Listeria monocytogenes.
    Augustin JC; Carlier V; Rozier J
    J Appl Microbiol; 1998 Feb; 84(2):185-91. PubMed ID: 9633632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes.
    Koller TO; Turnbull KJ; Vaitkevicius K; Crowe-McAuliffe C; Roghanian M; Bulvas O; Nakamoto JA; Kurata T; Julius C; Atkinson GC; Johansson J; Hauryliuk V; Wilson DN
    Nucleic Acids Res; 2022 Oct; 50(19):11285-11300. PubMed ID: 36300626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock.
    Lepock JR; Frey HE; Ritchie KP
    J Cell Biol; 1993 Sep; 122(6):1267-76. PubMed ID: 8376462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes.
    Giotis ES; McDowell DA; Blair IS; Wilkinson BJ
    Appl Environ Microbiol; 2007 Feb; 73(3):997-1001. PubMed ID: 17114323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells.
    Chan YC; Raengpradub S; Boor KJ; Wiedmann M
    Appl Environ Microbiol; 2007 Oct; 73(20):6484-98. PubMed ID: 17720827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.
    Loepfe C; Raimann E; Stephan R; Tasara T
    Foodborne Pathog Dis; 2010 Jul; 7(7):775-83. PubMed ID: 20184451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.