BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 11011021)

  • 1. The spinal 5-HT system contributes to the generation of fictive locomotion in lamprey.
    Zhang W; Grillner S
    Brain Res; 2000 Oct; 879(1-2):188-92. PubMed ID: 11011021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rostrocaudal distribution of 5-HT innervation in the lamprey spinal cord and differential effects of 5-HT on fictive locomotion.
    Zhang W; Pombal MA; el Manira A; Grillner S
    J Comp Neurol; 1996 Oct; 374(2):278-90. PubMed ID: 8906499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of 5-HT on calcium-dependent potassium channels and on the spinal locomotor network in lamprey is mediated by 5-HT1A-like receptors.
    Wikström M; Hill R; Hellgren J; Grillner S
    Brain Res; 1995 Apr; 678(1-2):191-9. PubMed ID: 7620887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in endogenous 5-hydroxytryptamine levels modulates the central network underlying locomotion in the lamprey spinal cord.
    Christenson J; Franck J; Grillner S
    Neurosci Lett; 1989 May; 100(1-3):188-92. PubMed ID: 2668801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of serotonin on fictive locomotion coordinated by a neural network deprived of NMDA receptor-mediated cellular properties.
    Schotland JL; Grillner S
    Exp Brain Res; 1993; 93(3):391-8. PubMed ID: 8100198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of magnesium on fictive locomotion induced by activation of N-methyl-D-aspartate (NMDA) receptors in the lamprey spinal cord in vitro.
    Brodin L; Grillner S
    Brain Res; 1986 Aug; 380(2):244-52. PubMed ID: 2428424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity.
    Bracci E; Beato M; Nistri A
    J Neurophysiol; 1998 May; 79(5):2643-52. PubMed ID: 9582235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extent and role of multisegmental coupling in the Lamprey spinal locomotor pattern generator.
    Miller WL; Sigvardt KA
    J Neurophysiol; 2000 Jan; 83(1):465-76. PubMed ID: 10634888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local serotonergic modulation of calcium-dependent potassium channels controls intersegmental coordination in the lamprey spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Jun; 67(6):1683-90. PubMed ID: 1629770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class.
    Beato M; Nistri A
    Proc Biol Sci; 1998 Nov; 265(1410):2073-80. PubMed ID: 9842733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT
    Cabaj AM; Majczyński H; Couto E; Gardiner PF; Stecina K; Sławińska U; Jordan LM
    J Physiol; 2017 Jan; 595(1):301-320. PubMed ID: 27393215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network.
    Schmitt DE; Hill RH; Grillner S
    J Neurophysiol; 2004 Oct; 92(4):2357-67. PubMed ID: 15190090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Methyl-D-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord.
    Brodin L; Grillner S; Rovainen CM
    Brain Res; 1985 Jan; 325(1-2):302-6. PubMed ID: 2858251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.