BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11011146)

  • 1. Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family.
    Fukuda M; Mikoshiba K
    J Biochem; 2000 Oct; 128(4):637-45. PubMed ID: 11011146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct self-oligomerization activities of synaptotagmin family. Unique calcium-dependent oligomerization properties of synaptotagmin VII.
    Fukuda M; Mikoshiba K
    J Biol Chem; 2000 Sep; 275(36):28180-5. PubMed ID: 10871604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the calcium-dependent multimerization of synaptotagmin VII mediated by its first and second C2 domains.
    Fukuda M; Mikoshiba K
    J Biol Chem; 2001 Jul; 276(29):27670-6. PubMed ID: 11373279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X.
    Fukuda M; Kanno E; Mikoshiba K
    J Biol Chem; 1999 Oct; 274(44):31421-7. PubMed ID: 10531343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the SDS-resistant synaptotagmin clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains.
    Fukuda M; Kanno E; Ogata Y; Mikoshiba K
    J Biol Chem; 2001 Oct; 276(43):40319-25. PubMed ID: 11514560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calcium-binding loops of the tandem C2 domains of synaptotagmin VII cooperatively mediate calcium-dependent oligomerization.
    Fukuda M; Katayama E; Mikoshiba K
    J Biol Chem; 2002 Aug; 277(32):29315-20. PubMed ID: 12034723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells.
    Saegusa C; Fukuda M; Mikoshiba K
    J Biol Chem; 2002 Jul; 277(27):24499-505. PubMed ID: 12006594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis.
    Hui E; Bai J; Wang P; Sugimori M; Llinas RR; Chapman ER
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5210-4. PubMed ID: 15793006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain. Implications for distinct functions of the two isoforms.
    Fukuda M; Mikoshiba K
    J Biol Chem; 1999 Oct; 274(44):31428-34. PubMed ID: 10531344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol 1,3,4,5-tetrakisphosphate binding activities of neuronal and non-neuronal synaptotagmins. Identification of conserved amino acid substitutions that abolish inositol 1,3,4,5-tetrakisphosphate binding to synaptotagmins III, V, and X.
    Ibata K; Fukuda M; Mikoshiba K
    J Biol Chem; 1998 May; 273(20):12267-73. PubMed ID: 9575177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts.
    Martinez I; Chakrabarti S; Hellevik T; Morehead J; Fowler K; Andrews NW
    J Cell Biol; 2000 Mar; 148(6):1141-49. PubMed ID: 10725327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I.
    Fukuda M
    Biochem J; 2002 Sep; 366(Pt 2):681-7. PubMed ID: 12049610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and biochemical analysis of the C2 domains of synaptotagmin IV.
    Thomas DM; Ferguson GD; Herschman HR; Elferink LA
    Mol Biol Cell; 1999 Jul; 10(7):2285-95. PubMed ID: 10397765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved from Drosophila to humans.
    Fukuda M
    J Biochem; 2003 May; 133(5):641-9. PubMed ID: 12801916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins.
    Li C; Ullrich B; Zhang JZ; Anderson RG; Brose N; Südhof TC
    Nature; 1995 Jun; 375(6532):594-9. PubMed ID: 7791877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV.
    Fukuda M
    Biochem Biophys Res Commun; 2003 Jun; 306(1):64-71. PubMed ID: 12788067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms.
    Mizutani A; Fukuda M; Ibata K; Shiraishi Y; Mikoshiba K
    J Biol Chem; 2000 Mar; 275(13):9823-31. PubMed ID: 10734137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family.
    Rickman C; Craxton M; Osborne S; Davletov B
    Biochem J; 2004 Mar; 378(Pt 2):681-6. PubMed ID: 14713287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent oligomerization of synaptotagmins I and II. Synaptotagmins I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium.
    Osborne SL; Herreros J; Bastiaens PI; Schiavo G
    J Biol Chem; 1999 Jan; 274(1):59-66. PubMed ID: 9867811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+ -dependent exocytosis in PC12 cells.
    Fukuda M; Kanno E; Satoh M; Saegusa C; Yamamoto A
    J Biol Chem; 2004 Dec; 279(50):52677-84. PubMed ID: 15456748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.