These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11012057)

  • 41. New cage for posterior minimally invasive lumbar interbody fusion: a study in vitro and in vivo.
    Hong X; Wu XT; Zhuang SY; Bao JP; Shi R
    Orthop Surg; 2014 Feb; 6(1):47-53. PubMed ID: 24590994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical evaluation of the ventral and lateral surface shear strain distributions in central compared with dorsolateral placement of cages for lumbar interbody fusion.
    Sohn MJ; Kayanja MM; Kilinçer C; Ferrara LA; Benzel EC
    J Neurosurg Spine; 2006 Mar; 4(3):219-24. PubMed ID: 16572621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lumbar spine stability after combined application of interspinous fastener and modified posterior lumbar interbody fusion: a biomechanical study.
    Yu X; Zhu L; Su Q
    Arch Orthop Trauma Surg; 2014 May; 134(5):623-9. PubMed ID: 24676650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs.
    Tsantrizos A; Andreou A; Aebi M; Steffen T
    Eur Spine J; 2000 Feb; 9(1):14-22. PubMed ID: 10766072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite element analysis of anterior lumbar interbody fusion: threaded cylindrical cage and pedicle screw fixation.
    Kim Y
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2558-68. PubMed ID: 17978654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model.
    McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM
    Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages.
    van Dijk M; Smit TH; Sugihara S; Burger EH; Wuisman PI
    Spine (Phila Pa 1976); 2002 Apr; 27(7):682-8. PubMed ID: 11923659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distractive properties of a threaded interbody fusion device. An in vivo model.
    Sandhu HS; Turner S; Kabo JM; Kanim LE; Liu D; Nourparvar A; Delamarter RB; Dawson EG
    Spine (Phila Pa 1976); 1996 May; 21(10):1201-10. PubMed ID: 8727195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Do we need a transforaminal lumbar interbody fusion cage to increase the stability of functional spinal unit when comparing unilateral and bilateral fixation?
    Ulutaş M; Özkaya M; Yaman O; Demir T
    Proc Inst Mech Eng H; 2018 Jul; 232(7):655-664. PubMed ID: 29923451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages.
    Rao RD; David KS; Wang M
    Spine (Phila Pa 1976); 2005 Dec; 30(24):2772-6. PubMed ID: 16371901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanics of a lumbar interspinous anchor with anterior lumbar interbody fusion.
    Karahalios DG; Kaibara T; Porter RW; Kakarla UK; Reyes PM; Baaj AA; Yaqoobi AS; Crawford NR
    J Neurosurg Spine; 2010 Apr; 12(4):372-80. PubMed ID: 20367372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine.
    Fan W; Guo LX
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):490-498. PubMed ID: 30714396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.
    Bhatia NN; Lee KH; Bui CN; Luna M; Wahba GM; Lee TQ
    Spine (Phila Pa 1976); 2012 Jan; 37(2):E79-85. PubMed ID: 21629171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro biomechanical effects of reconstruction on adjacent motion segment: comparison of aligned/kyphotic posterolateral fusion with aligned posterior lumbar interbody fusion/posterolateral fusion.
    Sudo H; Oda I; Abumi K; Ito M; Kotani Y; Hojo Y; Minami A
    J Neurosurg; 2003 Sep; 99(2 Suppl):221-8. PubMed ID: 12956466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revision of transforaminal lumbar interbody fusion using anterior lumbar interbody fusion: a biomechanical study in nonosteoporotic bone.
    Ploumis A; Wu C; Mehbod A; Fischer G; Faundez A; Wu W; Transfeldt E
    J Neurosurg Spine; 2010 Jan; 12(1):82-7. PubMed ID: 20043769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device.
    Sasso RC; Kitchel SH; Dawson EG
    Spine (Phila Pa 1976); 2004 Jan; 29(2):113-22; discussion 121-2. PubMed ID: 14722400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Augmentation of anterior lumbar interbody fusion with anterior pedicle screw fixation: demonstration of novel constructs and evaluation of biomechanical stability in cadaveric specimens.
    Karim A; Mukherjee D; Ankem M; Gonzalez-Cruz J; Smith D; Nanda A
    Neurosurgery; 2006 Mar; 58(3):522-7; discussion 522-7. PubMed ID: 16528193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study.
    Wang ST; Goel VK; Fu CY; Kubo S; Choi W; Liu CL; Chen TH
    Spine (Phila Pa 1976); 2005 Jan; 30(1):62-7. PubMed ID: 15626983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.