These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1048 related articles for article (PubMed ID: 11012152)
1. Hemopoietic progenitor cells in the blood as indicators of the functional status of the bone marrow after total-body and partial-body irradiation: experiences from studies in dogs. Nothdurft W; Kreja L Stem Cells; 1998; 16 Suppl 1():97-111. PubMed ID: 11012152 [TBL] [Abstract][Full Text] [Related]
2. Dose- and time-related quantitative and qualitative alterations in the granulocyte/macrophage progenitor cell (GM-CFC) compartment of dogs after total-body irradiation. Nothdurft W; Steinbach KH; Fliedner TM Radiat Res; 1984 May; 98(2):332-44. PubMed ID: 6374743 [TBL] [Abstract][Full Text] [Related]
3. Response of hemopoiesis in dogs to continuous low dose rate total body irradiation. Nothdurft W; Fliedner TM; Fritz TE; Seed TM Stem Cells; 1995 May; 13 Suppl 1():261-7. PubMed ID: 7488955 [TBL] [Abstract][Full Text] [Related]
4. Recovery of the proliferative and functional integrity of mouse bone marrow in long-term cultures established after whole-body irradiation at different doses and dose rates. Bierkens JG; Hendry JH; Testa NG Exp Hematol; 1991 Feb; 19(2):81-6. PubMed ID: 1991498 [TBL] [Abstract][Full Text] [Related]
5. Effects of total-body irradiation on bone marrow erythroid burst-forming units (BFU-E) and hemopoietic regeneration in dogs. Kreja L; Weinsheimer W; Selig C; Nothdurft W Radiat Res; 1993 Sep; 135(3):315-9. PubMed ID: 8378525 [TBL] [Abstract][Full Text] [Related]
6. Effects of low-dose total-body irradiation on canine bone marrow function and canine lymphoma. Cowall DE; MacVittie TJ; Parker GA; Weinberg SR Exp Hematol; 1981 Jul; 9(6):581-7. PubMed ID: 7262204 [TBL] [Abstract][Full Text] [Related]
7. Ontogeny of the granulocyte/macrophage progenitor cell (GM-CFC) pools in the beagle. Nothdurft W; Braasch E; Calvo W; Prümmer O; Carbonell F; Grilli G; Fliedner TM J Embryol Exp Morphol; 1984 Apr; 80():87-103. PubMed ID: 6747533 [TBL] [Abstract][Full Text] [Related]
9. Stromal cells in long-term cultures of liver, spleen, and bone marrow at different developmental ages have different capacities to maintain GM-CFC proliferation. Van Den Heuvel R; Schoeters G; Leppens H; Vanderborght O Exp Hematol; 1991 Feb; 19(2):115-21. PubMed ID: 1991493 [TBL] [Abstract][Full Text] [Related]
10. Acute and long-term alterations in the granulocyte/macrophage progenitor cell (GM-CFC) compartment of dogs after partial-body irradiation: irradiation of the upper body with a single myeloablative dose. Nothdurft W; Calvo W; Klinnert V; Steinbach KH; Werner C; Fliedner TM Int J Radiat Oncol Biol Phys; 1986 Jun; 12(6):949-57. PubMed ID: 3721936 [TBL] [Abstract][Full Text] [Related]
11. Mobilization of peripheral blood progenitor cells by Betafectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor. Patchen ML; Liang J; Vaudrain T; Martin T; Melican D; Zhong S; Stewart M; Quesenberry PJ Stem Cells; 1998; 16(3):208-17. PubMed ID: 9617896 [TBL] [Abstract][Full Text] [Related]
12. Stem cells from peripheral blood and bone marrow: a comparative evaluation of the hemopoietic potential in the dog. Raghavachar A; Prümmer O; Fliedner TM; Calvo W; Steinbach IB Int J Cell Cloning; 1983 Sep; 1(4):191-205. PubMed ID: 6366082 [TBL] [Abstract][Full Text] [Related]
13. Hematological effects of unilateral and bilateral exposures of dogs to 300-kVp X rays. Baltschukat K; Nothdurft W Radiat Res; 1990 Jul; 123(1):7-16. PubMed ID: 2371381 [TBL] [Abstract][Full Text] [Related]
14. Serum-free culture conditions for cells capable of producing long-term survival in lethally irradiated mice. Brown RL; Xu FS; Dusing SK; Li Q; Fischer R; Patchen M Stem Cells; 1997; 15(3):237-45. PubMed ID: 9170216 [TBL] [Abstract][Full Text] [Related]
15. Gamma-ray-induced cell killing and chromosome abnormalities in the bone marrow of p53-deficient mice. Wang L; Cui Y; Lord BI; Roberts SA; Potten CS; Hendry JH; Scott D Radiat Res; 1996 Sep; 146(3):259-66. PubMed ID: 8752303 [TBL] [Abstract][Full Text] [Related]
16. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Li W; Wang G; Cui J; Xue L; Cai L Exp Hematol; 2004 Nov; 32(11):1088-96. PubMed ID: 15539087 [TBL] [Abstract][Full Text] [Related]
17. In vivo administration of interleukin 6 delays hematopoietic regeneration in sublethally irradiated mice. Pojda Z; Aoki Y; Sobiczewska E; Machaj E; Tsuboi A Exp Hematol; 1992 Aug; 20(7):862-7. PubMed ID: 1628704 [TBL] [Abstract][Full Text] [Related]
18. Radioprotection of mice with interleukin-1: relationship to the number of erythroid and granulocyte-macrophage colony-forming cells. Schwartz GN; Patchen ML; Neta R; MacVittie TJ Radiat Res; 1990 Feb; 121(2):220-6. PubMed ID: 2305040 [TBL] [Abstract][Full Text] [Related]
19. Hematological effects in dogs after sequential irradiation of the upper and lower part of the body with single myeloablative doses. Nothdurft W; Baltschukat K; Fliedner TM Radiother Oncol; 1989 Mar; 14(3):247-59. PubMed ID: 2710956 [TBL] [Abstract][Full Text] [Related]
20. Hematologic effects of recombinant human interleukin-6 in dogs exposed to a total-body radiation dose of 2.4 Gy. Selig C; Kreja L; Müller H; Seifried E; Nothdurft W Exp Hematol; 1994 Jul; 22(7):551-8. PubMed ID: 8013570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]