These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 11012664)
1. AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Poole LB; Reynolds CM; Wood ZA; Karplus PA; Ellis HR; Li Calzi M Eur J Biochem; 2000 Oct; 267(20):6126-33. PubMed ID: 11012664 [TBL] [Abstract][Full Text] [Related]
2. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Reynolds CM; Meyer J; Poole LB Biochemistry; 2002 Feb; 41(6):1990-2001. PubMed ID: 11827546 [TBL] [Abstract][Full Text] [Related]
3. Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity. Reynolds CM; Poole LB Biochemistry; 2000 Aug; 39(30):8859-69. PubMed ID: 10913298 [TBL] [Abstract][Full Text] [Related]
4. Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Wood ZA; Poole LB; Karplus PA Biochemistry; 2001 Apr; 40(13):3900-11. PubMed ID: 11300769 [TBL] [Abstract][Full Text] [Related]
5. AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Poole LB; Godzik A; Nayeem A; Schmitt JD Biochemistry; 2000 Jun; 39(22):6602-15. PubMed ID: 10828978 [TBL] [Abstract][Full Text] [Related]
6. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. Niimura Y; Poole LB; Massey V J Biol Chem; 1995 Oct; 270(43):25645-50. PubMed ID: 7592740 [TBL] [Abstract][Full Text] [Related]
7. Activity of one of two engineered heterodimers of AhpF, the NADH:peroxiredoxin oxidoreductase from Salmonella typhimurium, reveals intrasubunit electron transfer between domains. Reynolds CM; Poole LB Biochemistry; 2001 Apr; 40(13):3912-9. PubMed ID: 11300770 [TBL] [Abstract][Full Text] [Related]
8. Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. Tartaglia LA; Storz G; Brodsky MH; Lai A; Ames BN J Biol Chem; 1990 Jun; 265(18):10535-40. PubMed ID: 2191951 [TBL] [Abstract][Full Text] [Related]
9. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Jönsson TJ; Ellis HR; Poole LB Biochemistry; 2007 May; 46(19):5709-21. PubMed ID: 17441733 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101 [TBL] [Abstract][Full Text] [Related]
11. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Poole LB Biochemistry; 1996 Jan; 35(1):65-75. PubMed ID: 8555199 [TBL] [Abstract][Full Text] [Related]
12. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase. Li Calzi M; Poole LB Biochemistry; 1997 Oct; 36(43):13357-64. PubMed ID: 9341228 [TBL] [Abstract][Full Text] [Related]
13. Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus. Logan C; Mayhew SG J Biol Chem; 2000 Sep; 275(39):30019-28. PubMed ID: 10862622 [TBL] [Abstract][Full Text] [Related]
14. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Poole LB; Ellis HR Biochemistry; 1996 Jan; 35(1):56-64. PubMed ID: 8555198 [TBL] [Abstract][Full Text] [Related]
15. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Poole LB; Higuchi M; Shimada M; Calzi ML; Kamio Y Free Radic Biol Med; 2000 Jan; 28(1):108-20. PubMed ID: 10656297 [TBL] [Abstract][Full Text] [Related]
16. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Poole LB Arch Biochem Biophys; 2005 Jan; 433(1):240-54. PubMed ID: 15581580 [TBL] [Abstract][Full Text] [Related]
17. Flavin-linked peroxide reductases: protein-sulfenic acids and the oxidative stress response. Claiborne A; Ross RP; Parsonage D Trends Biochem Sci; 1992 May; 17(5):183-6. PubMed ID: 1595127 [TBL] [Abstract][Full Text] [Related]
18. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum. Snider GW; Dustin CM; Ruggles EL; Hondal RJ Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600 [TBL] [Abstract][Full Text] [Related]
19. The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Alger HM; Williams DL Mol Biochem Parasitol; 2002 Apr; 121(1):129-39. PubMed ID: 11985869 [TBL] [Abstract][Full Text] [Related]
20. Mechanism and structure of thioredoxin reductase from Escherichia coli. Williams CH FASEB J; 1995 Oct; 9(13):1267-76. PubMed ID: 7557016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]