BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11012664)

  • 21. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis.
    Ohnishi K; Niimura Y; Hidaka M; Masaki H; Suzuki H; Uozumi T; Nishino T
    J Biol Chem; 1995 Mar; 270(11):5812-7. PubMed ID: 7726998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity.
    Lundström J; Holmgren A
    J Biol Chem; 1990 Jun; 265(16):9114-20. PubMed ID: 2188973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction mechanism of Amphibacillus xylanus NADH oxidase/alkyl hydroperoxide reductase flavoprotein.
    Niimura Y; Massey V
    J Biol Chem; 1996 Nov; 271(48):30459-64. PubMed ID: 8940011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases.
    Russel M; Model P
    J Biol Chem; 1988 Jun; 263(18):9015-9. PubMed ID: 3288628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4.
    Limauro D; Pedone E; Galdi I; Bartolucci S
    FEBS J; 2008 May; 275(9):2067-77. PubMed ID: 18355320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization.
    Baker LM; Raudonikiene A; Hoffman PS; Poole LB
    J Bacteriol; 2001 Mar; 183(6):1961-73. PubMed ID: 11222594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus.
    Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V
    J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidized and synchrotron cleaved structures of the disulfide redox center in the N-terminal domain of Salmonella typhimurium AhpF.
    Roberts BR; Wood ZA; Jönsson TJ; Poole LB; Karplus PA
    Protein Sci; 2005 Sep; 14(9):2414-20. PubMed ID: 16131664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological functions of thioredoxin and thioredoxin reductase.
    Arnér ES; Holmgren A
    Eur J Biochem; 2000 Oct; 267(20):6102-9. PubMed ID: 11012661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion.
    Ritz D; Lim J; Reynolds CM; Poole LB; Beckwith J
    Science; 2001 Oct; 294(5540):158-60. PubMed ID: 11588261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster.
    Bauer H; Massey V; Arscott LD; Schirmer RH; Ballou DP; Williams CH
    J Biol Chem; 2003 Aug; 278(35):33020-8. PubMed ID: 12816954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.
    Sueoka K; Yamazaki T; Hiyama T; Nakamoto H
    Biochem Biophys Res Commun; 2009 Mar; 380(3):520-4. PubMed ID: 19250645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of two active site mutations of thioredoxin reductase from Escherichia coli.
    Prongay AJ; Engelke DR; Williams CH
    J Biol Chem; 1989 Feb; 264(5):2656-64. PubMed ID: 2644268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the catalytic core component of the alkylhydroperoxide reductase AhpF from Escherichia coli.
    Bieger B; Essen LO
    J Mol Biol; 2001 Mar; 307(1):1-8. PubMed ID: 11243797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase.
    Holmgren A; Lyckeborg C
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5149-52. PubMed ID: 6933551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of Escherichia coli thioredoxin reductase with 1-deazaFAD. Evidence for 1-deazaFAD C-4a adduct formation linked to the ionization of an active site base.
    O'Donnell ME; Williams CH
    J Biol Chem; 1984 Feb; 259(4):2243-51. PubMed ID: 6365906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin.
    Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G
    J Biol Chem; 2017 Apr; 292(16):6667-6679. PubMed ID: 28270505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
    Ellis HR; Poole LB
    Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis.
    Brown DM; Upcroft JA; Upcroft P
    Mol Biochem Parasitol; 1996 Dec; 83(2):211-20. PubMed ID: 9027754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.