BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 11013111)

  • 1. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Lohr M; Wilhelm C
    Planta; 2001 Feb; 212(3):382-91. PubMed ID: 11289603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers.
    Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K
    Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B; Strzalka W; Strzalka K
    J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes.
    Latowski D; Kostecka A; Strzałka K
    Biochem Soc Trans; 2000 Dec; 28(6):810-2. PubMed ID: 11171216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase.
    Büch K; Stransky H; Hager A
    FEBS Lett; 1995 Nov; 376(1-2):45-8. PubMed ID: 8521963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protective function of the xanthophyll cycle in photosynthesis.
    Sarry JE; Montillet JL; Sauvaire Y; Havaux M
    FEBS Lett; 1994 Oct; 353(2):147-50. PubMed ID: 7926040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Violaxanthin: natural function and occurrence, biosynthesis, and heterologous production.
    Takemura M; Sahara T; Misawa N
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6133-6142. PubMed ID: 34338805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants.
    Dymova O; Golovko T
    Acta Biochim Pol; 2012; 59(1):143-4. PubMed ID: 22428127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants.
    Hobe S; Niemeier H; Bender A; Paulsen H
    Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa.
    Schubert H; Kroon BM; Matthijs HC
    J Biol Chem; 1994 Mar; 269(10):7267-72. PubMed ID: 8125939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.
    Niyogi KK; Grossman AR; Björkman O
    Plant Cell; 1998 Jul; 10(7):1121-34. PubMed ID: 9668132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P; Conklin PL; Niyogi KK
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shedding light on the dark side of xanthophyll cycles.
    Fernández-Marín B; Roach T; Verhoeven A; García-Plazaola JI
    New Phytol; 2021 May; 230(4):1336-1344. PubMed ID: 33452715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity.
    Latowski D; Akerlund HE; Strzałka K
    Biochemistry; 2004 Apr; 43(15):4417-20. PubMed ID: 15078086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple model describing the kinetics of the xanthophyll cycle.
    Sielewiesiuk J; Gruszecki WI
    Biophys Chem; 1991 Nov; 41(2):125-9. PubMed ID: 1773006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II.
    Lee AI; Thornber JP
    Plant Physiol; 1995 Feb; 107(2):565-74. PubMed ID: 7724673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle.
    Ivanov AG; Krol M; Maxwell D; Huner NP
    FEBS Lett; 1995 Aug; 371(1):61-4. PubMed ID: 7664885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.