These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 11013242)
1. Reverse methionine biosynthesis from S-adenosylmethionine in eukaryotic cells. Thomas D; Becker A; Surdin-Kerjan Y J Biol Chem; 2000 Dec; 275(52):40718-24. PubMed ID: 11013242 [TBL] [Abstract][Full Text] [Related]
2. Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. Vinci CR; Clarke SG J Biol Chem; 2007 Mar; 282(12):8604-12. PubMed ID: 17264075 [TBL] [Abstract][Full Text] [Related]
3. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. Vinci CR; Clarke SG J Biol Chem; 2010 Jul; 285(27):20526-31. PubMed ID: 20421295 [TBL] [Abstract][Full Text] [Related]
4. Yeast, plants, worms, and flies use a methyltransferase to metabolize age-damaged (R,S)-AdoMet, but what do mammals do? Vinci CR; Clarke SG Rejuvenation Res; 2010; 13(2-3):362-4. PubMed ID: 20370499 [TBL] [Abstract][Full Text] [Related]
5. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Dixon MM; Huang S; Matthews RG; Ludwig M Structure; 1996 Nov; 4(11):1263-75. PubMed ID: 8939751 [TBL] [Abstract][Full Text] [Related]
6. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. Ranocha P; Bourgis F; Ziemak MJ; Rhodes D; Gage DA; Hanson AD J Biol Chem; 2000 May; 275(21):15962-8. PubMed ID: 10747987 [TBL] [Abstract][Full Text] [Related]
7. Plant-driven repurposing of the ancient S-adenosylmethionine repair enzyme homocysteine S-methyltransferase. Bradbury LM; Ziemak MJ; El Badawi-Sidhu M; Fiehn O; Hanson AD Biochem J; 2014 Oct; 463(2):279-86. PubMed ID: 25046177 [TBL] [Abstract][Full Text] [Related]
8. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. Ravanel S; Block MA; Rippert P; Jabrin S; Curien G; Rébeillé F; Douce R J Biol Chem; 2004 May; 279(21):22548-57. PubMed ID: 15024005 [TBL] [Abstract][Full Text] [Related]
9. Comparative studies on the methionine synthesis in sheep and rat tissues. Xue GP; Snoswell AM Comp Biochem Physiol B; 1985; 80(3):489-94. PubMed ID: 4006442 [TBL] [Abstract][Full Text] [Related]
10. Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. Chiang EP; Wang YC; Chen WW; Tang FY J Clin Endocrinol Metab; 2009 Mar; 94(3):1017-25. PubMed ID: 19088160 [TBL] [Abstract][Full Text] [Related]
11. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Ranocha P; McNeil SD; Ziemak MJ; Li C; Tarczynski MC; Hanson AD Plant J; 2001 Mar; 25(5):575-84. PubMed ID: 11309147 [TBL] [Abstract][Full Text] [Related]
12. Water-Mediated Carbon-Oxygen Hydrogen Bonding Facilitates S-Adenosylmethionine Recognition in the Reactivation Domain of Cobalamin-Dependent Methionine Synthase. Fick RJ; Clay MC; Vander Lee L; Scheiner S; Al-Hashimi H; Trievel RC Biochemistry; 2018 Jul; 57(26):3733-3740. PubMed ID: 29733595 [TBL] [Abstract][Full Text] [Related]
13. Assay of S-methylmethionine and S-adenosylmethionine homocysteine transmethylases. SHAPIRO SK; YPHANTIS DA Biochim Biophys Acta; 1959 Nov; 36():241-4. PubMed ID: 14445542 [No Abstract] [Full Text] [Related]
14. Assignment of enzymatic function to specific protein regions of cobalamin-dependent methionine synthase from Escherichia coli. Drummond JT; Huang S; Blumenthal RM; Matthews RG Biochemistry; 1993 Sep; 32(36):9290-5. PubMed ID: 8369297 [TBL] [Abstract][Full Text] [Related]
15. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group. Drummond JT; Matthews RG Biochemistry; 1994 Mar; 33(12):3742-50. PubMed ID: 8142374 [TBL] [Abstract][Full Text] [Related]
16. Induction and repression in the S-adenosylmethionine and methionine biosynthetic systems of Saccharomyces cerevisiae. Ferro AJ; Spence KD J Bacteriol; 1973 Nov; 116(2):812-7. PubMed ID: 4583251 [TBL] [Abstract][Full Text] [Related]
17. S-Methylmethionine- and S-adenosylmethionine-homocysteine transmethylase in higher plant seeds. TURNER JE; SHAPIRO SK Biochim Biophys Acta; 1961 Aug; 51():581-4. PubMed ID: 13923210 [No Abstract] [Full Text] [Related]
18. Production of S-methyl-methionine using engineered Saccharomyces cerevisiae sake K6. Lee JM; Park MH; Park BS; Oh MK J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37653437 [TBL] [Abstract][Full Text] [Related]
19. Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Shivapurkar N; Poirier LA Carcinogenesis; 1983 Aug; 4(8):1051-7. PubMed ID: 6872150 [TBL] [Abstract][Full Text] [Related]
20. Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269. Huang S; Romanchuk G; Pattridge K; Lesley SA; Wilson IA; Matthews RG; Ludwig M Protein Sci; 2007 Aug; 16(8):1588-95. PubMed ID: 17656578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]