BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 11013402)

  • 1. Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model.
    Courtenay ES; Capp MW; Saecker RM; Record MT
    Proteins; 2000; Suppl 4():72-85. PubMed ID: 11013402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of interactions of urea and guanidinium salts with protein surface: relationship between solute effects on protein processes and changes in water-accessible surface area.
    Courtenay ES; Capp MW; Record MT
    Protein Sci; 2001 Dec; 10(12):2485-97. PubMed ID: 11714916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface.
    Felitsky DJ; Record MT
    Biochemistry; 2004 Jul; 43(28):9276-88. PubMed ID: 15248785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solvation of internal residues.
    Staniforth RA; Burston SG; Smith CJ; Jackson GS; Badcoe IG; Atkinson T; Holbrook JJ; Clarke AR
    Biochemistry; 1993 Apr; 32(15):3842-51. PubMed ID: 8471598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of denaturant-induced unfolding of a protein that exhibits variable two-state denaturation.
    Ferreon AC; Bolen DW
    Biochemistry; 2004 Oct; 43(42):13357-69. PubMed ID: 15491142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urea-amide preferential interactions in water: quantitative comparison of model compound data with biopolymer results using water accessible surface areas.
    Cannon JG; Anderson CF; Record MT
    J Phys Chem B; 2007 Aug; 111(32):9675-85. PubMed ID: 17658791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding.
    Myers JK; Pace CN; Scholtz JM
    Protein Sci; 1995 Oct; 4(10):2138-48. PubMed ID: 8535251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of a protein by guanidinium chloride.
    Mayr LM; Schmid FX
    Biochemistry; 1993 Aug; 32(31):7994-8. PubMed ID: 8347603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of interactions of native bovine serum albumin with highly excluded (glycine betaine) and moderately accumulated (urea) solutes by a novel application of vapor pressure osmometry.
    Zhang W; Capp MW; Bond JP; Anderson CF; Record MT
    Biochemistry; 1996 Aug; 35(32):10506-16. PubMed ID: 8756707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetrically-derived parameters for protein interactions with urea and guanidine-HCl are not consistent with denaturant m values.
    DeKoster GT; Robertson AD
    Biophys Chem; 1997 Feb; 64(1-3):59-68. PubMed ID: 9127938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential interactions of glycine betaine and of urea with DNA: implications for DNA hydration and for effects of these solutes on DNA stability.
    Hong J; Capp MW; Anderson CF; Saecker RM; Felitsky DJ; Anderson MW; Record MT
    Biochemistry; 2004 Nov; 43(46):14744-58. PubMed ID: 15544345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent denaturation of proteins and interpretations of the m value.
    Scholtz JM; Grimsley GR; Pace CN
    Methods Enzymol; 2009; 466():549-65. PubMed ID: 21609876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium unfolding of RNase Rs from Rhizopus stolonifer: pH dependence of chemical and thermal denaturation.
    Deshpande RA; Khan MI; Shankar V
    Biochim Biophys Acta; 2003 May; 1648(1-2):184-94. PubMed ID: 12758161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of folding and unfolding reactions of cytochrome b5.
    Manyusa S; Mortuza G; Whitford D
    Biochemistry; 1999 Oct; 38(43):14352-62. PubMed ID: 10572010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hofmeister effects in protein unfolding kinetics: estimation of changes in surface area upon formation of the transition state.
    López-Arenas L; Solís-Mendiola S; Padilla-Zúñiga J; Hernández-Arana A
    Biochim Biophys Acta; 2006 Jul; 1764(7):1260-7. PubMed ID: 16837256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin.
    Wong HJ; Stathopulos PB; Bonner JM; Sawyer M; Meiering EM
    J Mol Biol; 2004 Dec; 344(4):1089-107. PubMed ID: 15544814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.