These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 11014199)

  • 1. Chromodomains are protein-RNA interaction modules.
    Akhtar A; Zink D; Becker PB
    Nature; 2000 Sep; 407(6802):405-9. PubMed ID: 11014199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex.
    Buscaino A; Köcher T; Kind JH; Holz H; Taipale M; Wagner K; Wilm M; Akhtar A
    Mol Cell; 2003 May; 11(5):1265-77. PubMed ID: 12769850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males.
    Deng X; Meller VH
    Genetics; 2006 Dec; 174(4):1859-66. PubMed ID: 17028315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex.
    Morales V; Straub T; Neumann MF; Mengus G; Akhtar A; Becker PB
    EMBO J; 2004 Jun; 23(11):2258-68. PubMed ID: 15141166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex.
    Morales V; Regnard C; Izzo A; Vetter I; Becker PB
    Mol Cell Biol; 2005 Jul; 25(14):5947-54. PubMed ID: 15988010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster.
    Gu W; Szauter P; Lucchesi JC
    Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila.
    Kind J; Vaquerizas JM; Gebhardt P; Gentzel M; Luscombe NM; Bertone P; Akhtar A
    Cell; 2008 May; 133(5):813-28. PubMed ID: 18510926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype.
    Prabhakaran M; Kelley RL
    BMC Biol; 2010 Jun; 8():80. PubMed ID: 20537125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.
    Akhtar A; Becker PB
    Mol Cell; 2000 Feb; 5(2):367-75. PubMed ID: 10882077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin.
    Kelley RL; Meller VH; Gordadze PR; Roman G; Davis RL; Kuroda MI
    Cell; 1999 Aug; 98(4):513-22. PubMed ID: 10481915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila.
    Schiemann AH; Li F; Weake VM; Belikoff EJ; Klemmer KC; Moore SA; Scott MJ
    BMC Mol Biol; 2010 Nov; 11():80. PubMed ID: 21062452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities.
    Gu W; Wei X; Pannuti A; Lucchesi JC
    EMBO J; 2000 Oct; 19(19):5202-11. PubMed ID: 11013222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path to equality strewn with roX.
    Kelley RL
    Dev Biol; 2004 May; 269(1):18-25. PubMed ID: 15081354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in
    Copur Ö; Gorchakov A; Finkl K; Kuroda MI; Müller J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13336-13341. PubMed ID: 30530664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins.
    Maenner S; Müller M; Fröhlich J; Langer D; Becker PB
    Mol Cell; 2013 Jul; 51(2):174-84. PubMed ID: 23870143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex.
    Park Y; Mengus G; Bai X; Kageyama Y; Meller VH; Becker PB; Kuroda MI
    Mol Cell; 2003 Apr; 11(4):977-86. PubMed ID: 12718883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imprinting of the Y chromosome influences dosage compensation in roX1 roX2 Drosophila melanogaster.
    Menon DU; Meller VH
    Genetics; 2009 Nov; 183(3):811-20. PubMed ID: 19704014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila.
    Meller VH; Gordadze PR; Park Y; Chu X; Stuckenholz C; Kelley RL; Kuroda MI
    Curr Biol; 2000 Feb; 10(3):136-43. PubMed ID: 10679323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.