BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11015040)

  • 1. Cholesterol content of focal opacities and multilamellar bodies in the human lens: filipin cytochemistry and freeze fracture.
    VanMarle J; Vrensen GF
    Ophthalmic Res; 2000; 32(6):285-91. PubMed ID: 11015040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens.
    Duindam JJ; Vrensen GF; Otto C; Greve J
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):94-103. PubMed ID: 9430550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of fiber membranes in the human eye lens. Ultrastructural and Raman microspectroscopic observations.
    Vrensen GF; Duindam HJ
    Ophthalmic Res; 1995; 27 Suppl 1():78-85. PubMed ID: 8577466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of interlocking domains may contribute to formation of membranous globules and lens opacity in ephrin-A5(-/-) mice.
    Biswas S; Son A; Yu Q; Zhou R; Lo WK
    Exp Eye Res; 2016 Apr; 145():130-139. PubMed ID: 26643403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-containing opacities in the human lens.
    Harding CV; Chylack LT; Susan SR; Lo WK; Bobrowski WF
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1194-202. PubMed ID: 6885307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap junctions contain different amounts of cholesterol which undergo unique sequestering processes during fiber cell differentiation in the embryonic chicken lens.
    Biswas SK; Lo WK
    Mol Vis; 2007 Mar; 13():345-59. PubMed ID: 17392685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens.
    Biswas SK; Lee JE; Brako L; Jiang JX; Lo WK
    Mol Vis; 2010 Nov; 16():2328-41. PubMed ID: 21139982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap junction remodeling associated with cholesterol redistribution during fiber cell maturation in the adult chicken lens.
    Biswas SK; Jiang JX; Lo WK
    Mol Vis; 2009 Aug; 15():1492-508. PubMed ID: 19657477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of filipin-sterol complexes in cell membranes of eosinophils.
    Pimenta PF; de Souza W
    Histochemistry; 1984; 80(6):563-7. PubMed ID: 6469713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembranous cytochemistry: a new morphological technique for studying cholesterol in the astrocyte plasma membrane of ischemic brain cells.
    Cuevas P; Gutierrez-Diaz JA; Reimers D; Dujovny M; Diaz FG; Ausman JI
    Neurosurgery; 1987 Feb; 20(2):243-8. PubMed ID: 3561731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane cholesterol in myocardial muscle and capillary endothelial cells. Distribution of filipin-induced deformations in freeze-fracture.
    Severs NJ
    Eur J Cell Biol; 1981 Oct; 25(2):289-99. PubMed ID: 7333291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lens membranes III. Freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing.
    Broekhuyse RM; Kuhlmann ED; Bijvelt J; Verkleij AJ; Ververgaert PH
    Exp Eye Res; 1978 Feb; 26(2):147-56. PubMed ID: 631231
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of filipin-cholesterol complexes in rat incisor odontoblasts.
    Goldberg M; Escaig F
    J Biol Buccale; 1984 Jun; 12(2):171-80. PubMed ID: 6590556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture cytochemical study of membrane systems in human epidermis using filipin as a probe for cholesterol.
    Kitajima Y; Sekiya T; Mori S; Nozawa Y; Yaoita H
    J Invest Dermatol; 1985 Feb; 84(2):149-53. PubMed ID: 2578531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma.
    Fields RD; Black JA; Waxman SG
    Brain Res; 1987 Feb; 404(1-2):21-32. PubMed ID: 3567567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-fracture cytochemistry of membrane cholesterol in Blastocystis hominis.
    Yoshikawa H; Hayakawa A
    Int J Parasitol; 1996 Oct; 26(10):1111-4. PubMed ID: 8982792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas.
    Caldwell RB; McLaughlin BJ
    J Comp Neurol; 1985 Jun; 236(4):523-37. PubMed ID: 4056101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in filipin-sterol binding in the rat cingulate cortex after the administration of antidepressant drugs. A freeze-fracture study.
    Bal A; Bird MM
    Brain Res; 1991 May; 550(1):147-51. PubMed ID: 1888992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane alterations during cataract development in the Nakano mouse lens.
    Tanaka M; Russell P; Smith S; Uga S; Kuwabara T; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):619-29. PubMed ID: 7380622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane architecture as a function of lens fibre maturation: a freeze fracture and scanning electron microscopic study in the human lens.
    Vrensen G; Van Marle J; Van Veen H; Willekens B
    Exp Eye Res; 1992 Mar; 54(3):433-46. PubMed ID: 1521571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.