These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Calcium-dependent solvation of the myristoyl group of recoverin. Hughes RE; Brzovic PS; Klevit RE; Hurley JB Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868 [TBL] [Abstract][Full Text] [Related]
7. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin. Ames JB; Tanaka T; Ikura M; Stryer L J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345 [TBL] [Abstract][Full Text] [Related]
8. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Ames JB; Tanaka T; Stryer L; Ikura M Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075 [TBL] [Abstract][Full Text] [Related]
9. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3. Li C; Lim S; Braunewell KH; Ames JB PLoS One; 2016; 11(11):e0165921. PubMed ID: 27820860 [TBL] [Abstract][Full Text] [Related]
10. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies. Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403 [TBL] [Abstract][Full Text] [Related]
11. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213 [TBL] [Abstract][Full Text] [Related]
12. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis. Xu X; Ishima R; Ames JB Proteins; 2011 Jun; 79(6):1910-22. PubMed ID: 21465563 [TBL] [Abstract][Full Text] [Related]
13. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin. Baldwin AN; Ames JB Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856 [TBL] [Abstract][Full Text] [Related]
14. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant. Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978 [TBL] [Abstract][Full Text] [Related]
15. Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. Huttner IG; Strahl T; Osawa M; King DS; Ames JB; Thorner J J Biol Chem; 2003 Feb; 278(7):4862-74. PubMed ID: 12477731 [TBL] [Abstract][Full Text] [Related]
16. Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. Ladant D J Biol Chem; 1995 Feb; 270(7):3179-85. PubMed ID: 7852401 [TBL] [Abstract][Full Text] [Related]
17. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423 [TBL] [Abstract][Full Text] [Related]
18. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897 [TBL] [Abstract][Full Text] [Related]