BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11015292)

  • 1. Potent stimulation and inhibition of the CFTR Cl(-) current by phloxine B.
    Bachmann A; Russ U; Waldegger S; Quast U
    Br J Pharmacol; 2000 Oct; 131(3):433-40. PubMed ID: 11015292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phloxine B interacts with the cystic fibrosis transmembrane conductance regulator at multiple sites to modulate channel activity.
    Cai Z; Sheppard DN
    J Biol Chem; 2002 May; 277(22):19546-53. PubMed ID: 11904291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B.
    Melin P; Norez C; Callebaut I; Becq F
    J Membr Biol; 2005 Dec; 208(3):203-12. PubMed ID: 16604470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel.
    Schreiber R; Hopf A; Mall M; Greger R; Kunzelmann K
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5310-5. PubMed ID: 10220462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line.
    Lansdell KA; Cai Z; Kidd JF; Sheppard DN
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potent inhibition of the CFTR chloride channel by suramin.
    Bachmann A; Russ U; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
    McNicholas CM; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8083-8. PubMed ID: 8755607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects.
    Wang F; Zeltwanger S; Yang IC; Nairn AC; Hwang TC
    J Gen Physiol; 1998 Mar; 111(3):477-90. PubMed ID: 9482713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct action of genistein on CFTR.
    Weinreich F; Wood PG; Riordan JR; Nagel G
    Pflugers Arch; 1997 Aug; 434(4):484-91. PubMed ID: 9211816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of genistein-induced activation of protein kinase A-dependent Cl- conductance in cardiac myocytes.
    Obayashi K; Horie M; Washizuka T; Nishimoto T; Sasayama S
    Pflugers Arch; 1999 Aug; 438(3):269-77. PubMed ID: 10398855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
    McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism.
    Spirlì C; Fiorotto R; Song L; Santos-Sacchi J; Okolicsanyi L; Masier S; Rocchi L; Vairetti MP; De Bernard M; Melero S; Pozzan T; Strazzabosco M
    Gastroenterology; 2005 Jul; 129(1):220-33. PubMed ID: 16012949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels.
    Routaboul C; Norez C; Melin P; Molina MC; Boucherle B; Bossard F; Noel S; Robert R; Gauthier C; Becq F; Décout JL
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1023-35. PubMed ID: 17578899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs.
    Al-Nakkash L; Hu S; Li M; Hwang TC
    J Pharmacol Exp Ther; 2001 Feb; 296(2):464-72. PubMed ID: 11160632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
    Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
    Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC
    J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.