BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11016407)

  • 1. Copper uptake and intracellular distribution in the human intestinal Caco-2 cell line.
    Ferruzza S; Sambuy Y; Ciriolo MR; De Martino A; Santaroni P; Rotilio G; Scarino ML
    Biometals; 2000 Jun; 13(2):179-85. PubMed ID: 11016407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure.
    Arredondo M; Uauy R; González M
    Biochim Biophys Acta; 2000 Apr; 1474(2):169-76. PubMed ID: 10742596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss.
    Burke J; Handy RD
    J Exp Biol; 2005 Jan; 208(Pt 2):391-407. PubMed ID: 15634857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium copper chlorophyllin: in vitro digestive stability and accumulation by Caco-2 human intestinal cells.
    Ferruzzi MG; Failla ML; Schwartz SJ
    J Agric Food Chem; 2002 Mar; 50(7):2173-9. PubMed ID: 11902975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and kinetics of alpha-linolenic acid uptake in Caco-2 clone TC7.
    Tranchant T; Besson P; Hoinard C; Delarue J; Antoine JM; Couet C; Goré J
    Biochim Biophys Acta; 1997 Apr; 1345(2):151-61. PubMed ID: 9106494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment.
    Bauerly KA; Kelleher SL; Lönnerdal B
    J Nutr Biochem; 2004 Mar; 15(3):155-62. PubMed ID: 15023397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper treatment alters the permeability of tight junctions in cultured human intestinal Caco-2 cells.
    Ferruzza S; Scarino ML; Rotilio G; Ciriolo MR; Santaroni P; Muda AO; Sambuy Y
    Am J Physiol; 1999 Dec; 277(6):G1138-48. PubMed ID: 10600810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake.
    Zimnicka AM; Ivy K; Kaplan JH
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C588-99. PubMed ID: 21191107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the transport of the organic cation [3H]MPP+ in human intestinal epithelial (Caco-2) cells.
    Martel F; Calhau C; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):505-13. PubMed ID: 10832604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco-2.
    Mizuuchi H; Katsura T; Hashimoto Y; Inui K
    Pharm Res; 2000 May; 17(5):539-45. PubMed ID: 10888305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular copper transport in cultured hepatoma cells.
    Freedman JH; Peisach J
    Biochem Biophys Res Commun; 1989 Oct; 164(1):134-40. PubMed ID: 2553012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High zinc concentrations in culture media affect copper uptake and transport in differentiated human colon adenocarcinoma cells.
    Reeves PG; Briske-Anderson M; Newman SM
    J Nutr; 1996 Jun; 126(6):1701-12. PubMed ID: 8648446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologic concentrations of zinc affect the kinetics of copper uptake and transport in the human intestinal cell model, Caco-2.
    Reeves PG; Briske-Anderson M; Johnson L
    J Nutr; 1998 Oct; 128(10):1794-801. PubMed ID: 9772151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein.
    Bourdet DL; Thakker DR
    Pharm Res; 2006 Jun; 23(6):1165-77. PubMed ID: 16741655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and intracellular fate of L-DOPA in a human intestinal epithelial cell line: Caco-2.
    Vieira-Coelho MA; Soares-Da-Silva P
    Am J Physiol; 1998 Jul; 275(1):C104-12. PubMed ID: 9688840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of perfluorooctanoic acid by Caco-2 cells: Involvement of organic anion transporting polypeptides.
    Kimura O; Fujii Y; Haraguchi K; Kato Y; Ohta C; Koga N; Endo T
    Toxicol Lett; 2017 Aug; 277():18-23. PubMed ID: 28552774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between copper and zinc in metal accumulation in rats with particular reference to the synthesis of induced-metallothionein.
    Irato P; Albergoni V
    Chem Biol Interact; 2005 Aug; 155(3):155-64. PubMed ID: 16083871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the electrostatic loop of Cu,Zn superoxide dismutase in the copper uptake process.
    Ciriolo MR; Battistoni A; Falconi M; Filomeni G; Rotilio G
    Eur J Biochem; 2001 Feb; 268(3):737-42. PubMed ID: 11168413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1995 Mar; 1234(1):111-8. PubMed ID: 7880851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.