BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11016417)

  • 1. Automatic classification of protein sequences into structure/function groups via parallel cascade identification: a feasibility study.
    Korenberg MJ; David R; Hunter IW; Solomon JE
    Ann Biomed Eng; 2000 Jul; 28(7):803-11. PubMed ID: 11016417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of adenosine triphosphate binding sites using parallel cascade system identification.
    Green JR; Korenberg MJ; David R; Hunter IW
    Ann Biomed Eng; 2003 Apr; 31(4):462-70. PubMed ID: 12723687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel cascade identification as a means for automatically classifying protein sequences into structure/function groups.
    Korenberg M; Solomon JE; Regelson ME
    Biol Cybern; 2000 Jan; 82(1):15-21. PubMed ID: 10650904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel cascade recognition of exon and intron DNA sequences.
    Korenberg MJ; Lipson ED; Green JR; Solomon JE
    Ann Biomed Eng; 2002 Jan; 30(1):129-40. PubMed ID: 11874136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classifying noisy protein sequence data: a case study of immunoglobulin light chains.
    Yu C; Zavaljevski N; Stevens FJ; Yackovich K; Reifman J
    Bioinformatics; 2005 Jun; 21 Suppl 1():i495-501. PubMed ID: 15961496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HMM-ModE--improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences.
    Srivastava PK; Desai DK; Nandi S; Lynn AM
    BMC Bioinformatics; 2007 Mar; 8():104. PubMed ID: 17389042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the advantages of multi-input single-output parallel cascade classifiers.
    Green JR; Korenberg MJ
    Ann Biomed Eng; 2006 Apr; 34(4):709-16. PubMed ID: 16538545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of protein quaternary structure with support vector machine.
    Zhang SW; Pan Q; Zhang HC; Zhang YL; Wang HY
    Bioinformatics; 2003 Dec; 19(18):2390-6. PubMed ID: 14668222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein family classification using sparse Markov transducers.
    Eskin E; Grundy WN; Singer Y
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():134-45. PubMed ID: 10977074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear models based on simple topological indices to identify RNase III protein members.
    Agüero-Chapin G; de la Riva GA; Molina-Ruiz R; Sánchez-Rodríguez A; Pérez-Machado G; Vasconcelos V; Antunes A
    J Theor Biol; 2011 Mar; 273(1):167-78. PubMed ID: 21192951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIPPI: highly accurate protein family classification with ensembles of HMMs.
    Nguyen NP; Nute M; Mirarab S; Warnow T
    BMC Genomics; 2016 Nov; 17(Suppl 10):765. PubMed ID: 28185571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein family classification using sparse markov transducers.
    Eskin E; Noble WS; Singer Y
    J Comput Biol; 2003; 10(2):187-213. PubMed ID: 12804091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoregressive and iterative hidden Markov models for periodicity detection and solenoid structure recognition in protein sequences.
    Song NY; Yan H
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):436-41. PubMed ID: 24235115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised protein family classification and new family construction.
    Yi G; Thon MR; Sze SH
    J Comput Biol; 2012 Aug; 19(8):957-67. PubMed ID: 22876787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MMM-QSAR recognition of ribonucleases without alignment: comparison with an HMM model and isolation from Schizosaccharomyces pombe, prediction, and experimental assay of a new sequence.
    Agüero-Chapín G; Gonzalez-Díaz H; de la Riva G; Rodríguez E; Sanchez-Rodríguez A; Podda G; Vazquez-Padrón RI
    J Chem Inf Model; 2008 Feb; 48(2):434-48. PubMed ID: 18254616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations on probabilistic suffix trees: statistical modeling and prediction of protein families.
    Bejerano G; Yona G
    Bioinformatics; 2001 Jan; 17(1):23-43. PubMed ID: 11222260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.