These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11016503)

  • 1. Understanding spontaneous output fluctuations of an amperometric glucose sensor: effect of inhalation anesthesia and use of a nonenzyme containing electrode.
    Ward WK; Wood MD; Troupe JE
    ASAIO J; 2000; 46(5):540-6. PubMed ID: 11016503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability.
    Pickup JC; Shaw GW; Claremont DJ
    Biosensors; 1989; 4(2):109-19. PubMed ID: 2719726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress towards in vivo glucose sensing with a ferrocene-mediated amperometric enzyme electrode.
    Pickup JC; Claremont DJ
    Horm Metab Res Suppl; 1988; 20():34-6. PubMed ID: 3248788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The GOD-H2O2-electrode as an approach to implantable glucose sensors.
    Abel P; Fischer U; Brunstein E; Ertle R
    Horm Metab Res Suppl; 1988; 20():26-9. PubMed ID: 3248787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man.
    Pickup JC; Claremont DJ; Shaw GW
    Acta Diabetol; 1993; 30(3):143-8. PubMed ID: 8111074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potentially implantable enzyme electrode for amperometric measurement of glucose.
    Kerner W; Zier H; Steinbach G; Brückel J; Pfeiffer EF; Weiss T; Cammann K; Planck H
    Horm Metab Res Suppl; 1988; 20():8-13. PubMed ID: 3248792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of enzyme-based tear glucose electrochemical sensors over a wide range of blood glucose concentrations.
    Peng B; Lu J; Balijepalli AS; Major TC; Cohan BE; Meyerhoff ME
    Biosens Bioelectron; 2013 Nov; 49():204-9. PubMed ID: 23747996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring.
    Li J; Koinkar P; Fuchiwaki Y; Yasuzawa M
    Biosens Bioelectron; 2016 Dec; 86():90-94. PubMed ID: 27336616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors.
    Jung SK; Wilson GS
    Anal Chem; 1996 Feb; 68(4):591-6. PubMed ID: 8999737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors.
    Hoshi T; Anzai J; Osa T
    Anal Chem; 1995 Feb; 67(4):770-4. PubMed ID: 7702192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer.
    Pickup JC; Shaw GW; Claremont DJ
    Diabetologia; 1989 Mar; 32(3):213-7. PubMed ID: 2666212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison between different immobilised glucoseoxidase-based electrodes.
    Memoli A; Annesini MC; Mascini M; Papale S; Petralito S
    J Pharm Biomed Anal; 2002 Aug; 29(6):1045-52. PubMed ID: 12110389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-controlled Mediated Electron Transfer-type Bioelectrocatalysis Using Microband Electrodes as Ultimate Amperometric Glucose Sensors.
    Matsui Y; Hamamoto K; Kitazumi Y; Shirai O; Kano K
    Anal Sci; 2017; 33(7):845-851. PubMed ID: 28690264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedle electrodes toward an amperometric glucose-sensing smart patch.
    Invernale MA; Tang BC; York RL; Le L; Hou DY; Anderson DG
    Adv Healthc Mater; 2014 Mar; 3(3):338-42. PubMed ID: 24039157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical glucose and lactate sensors based on "wired" thermostable soybean peroxidase operating continuously and stably at 37 degrees C.
    Kenausis G; Chen Q; Heller A
    Anal Chem; 1997 Mar; 69(6):1054-60. PubMed ID: 9075402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of polytetrafluoroethylene (PTFE) membranes to control interference effects in a glucose biosensor.
    Vaidya R; Wilkins E
    Biomed Instrum Technol; 1993; 27(6):486-94. PubMed ID: 8275143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of the acetaminophen interference in an implantable glucose sensor.
    Zhang Y; Hu Y; Wilson GS; Moatti-Sirat D; Poitout V; Reach G
    Anal Chem; 1994 Apr; 66(7):1183-8. PubMed ID: 8160962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Continuous intracorporeal glucose measurement using enzyme electrodes].
    Brunstein E; Abel P; Rebrin K; Fischer U
    Z Exp Chir Transplant Kunstliche Organe; 1990; 23(2):95-8. PubMed ID: 2278163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective amperometric glucose microdevice derived from diffusion layer gap electrode.
    Jia WZ; Hu YL; Song YY; Wang K; Xia XH
    Biosens Bioelectron; 2008 Jan; 23(6):892-8. PubMed ID: 18029169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality?
    Rebrin K; Fischer U; Hahn von Dorsche H; von Woetke T; Abel P; Brunstein E
    J Biomed Eng; 1992 Jan; 14(1):33-40. PubMed ID: 1569738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.