These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 11017268)
1. Kramers problem for a multiwell potential. Arrayas M; Kaufman IK; Luchinsky DG; McClintock PV; Soskin SM Phys Rev Lett; 2000 Mar; 84(12):2556-9. PubMed ID: 11017268 [TBL] [Abstract][Full Text] [Related]
2. Noise-induced escape on time scales preceding quasistationarity: New developments in the Kramers problem. Soskin SM; Sheka VI; Linnik TL; Arrayas M; Kaufman IK; Luchinsky DG; McClintock PV; Mannella R Chaos; 2001 Sep; 11(3):595-604. PubMed ID: 12779497 [TBL] [Abstract][Full Text] [Related]
3. Short time scales in the Kramers problem: a stepwise growth of the escape flux. Soskin SM; Sheka VI; Linnik TL; Mannella R Phys Rev Lett; 2001 Feb; 86(9):1665-9. PubMed ID: 11290219 [TBL] [Abstract][Full Text] [Related]
4. Reaction rate theory: what it was, where is it today, and where is it going? Pollak E; Talkner P Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918 [TBL] [Abstract][Full Text] [Related]
5. Quantum tunneling at zero temperature in the strong friction regime. Bolivar AO Phys Rev Lett; 2005 Jan; 94(2):026807. PubMed ID: 15698213 [TBL] [Abstract][Full Text] [Related]
6. Kramers' escape problem for fractional Klein-Kramers equation with tempered α-stable waiting times. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021137. PubMed ID: 21928979 [TBL] [Abstract][Full Text] [Related]
8. Velocity dependence of friction and Kramers relaxation rates. Gelin MF; Kosov DS J Chem Phys; 2007 Jun; 126(24):244501. PubMed ID: 17614558 [TBL] [Abstract][Full Text] [Related]
9. Kramers' law for a bistable system with time-delayed noise. Goulding D; Melnik S; Curtin D; Piwonski T; Houlihan J; Gleeson JP; Huyet G Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031128. PubMed ID: 17930220 [TBL] [Abstract][Full Text] [Related]
10. Coagulation by random velocity fields as a Kramers problem. Mehlig B; Wilkinson M Phys Rev Lett; 2004 Jun; 92(25 Pt 1):250602. PubMed ID: 15244991 [TBL] [Abstract][Full Text] [Related]
11. Crossover of the thermal escape problem in annular spatially distributed systems. Fedorov KG; Pankratov AL Phys Rev Lett; 2009 Dec; 103(26):260601. PubMed ID: 20366300 [TBL] [Abstract][Full Text] [Related]
12. Kramers escape rate in nonlinear diffusive media. JiangLin Z; Bao JD; Wenping G J Chem Phys; 2006 Jan; 124(2):024112. PubMed ID: 16422576 [TBL] [Abstract][Full Text] [Related]
13. Two-point approximation to the Kramers problem with coloured noise. Campos D; Méndez V J Chem Phys; 2012 Feb; 136(7):074506. PubMed ID: 22360247 [TBL] [Abstract][Full Text] [Related]
14. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
15. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031101. PubMed ID: 22060322 [TBL] [Abstract][Full Text] [Related]
16. Simple relations between mean passage times and Kramers' stationary rate. Boilley D; Jurado B; Schmitt C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056129. PubMed ID: 15600714 [TBL] [Abstract][Full Text] [Related]
17. Strong enhancement of noise-induced escape by nonadiabatic periodic driving due to transient chaos. Soskin SM; Mannella R; Arrayás M; Silchenko AN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051111. PubMed ID: 11414891 [TBL] [Abstract][Full Text] [Related]
18. Solution of Kramers' problem for a moderately to heavily damped elastic string. Graham AJ; Kerr WC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016106. PubMed ID: 11800735 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of frictional force in carbon nanotube oscillators. Chen Y; Yang J; Wang X; Ni Z; Li D Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306 [TBL] [Abstract][Full Text] [Related]
20. Transition state theory approach to polymer escape from a one dimensional potential well. Mökkönen H; Ikonen T; Ala-Nissila T; Jónsson H J Chem Phys; 2015 Jun; 142(22):224906. PubMed ID: 26071730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]