BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11017317)

  • 1. Imaging sustained dissipative patterns in the metabolism of individual living cells.
    Petty HR; Worth RG; Kindzelskii AL
    Phys Rev Lett; 2000 Mar; 84(12):2754-7. PubMed ID: 11017317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent role of traveling metabolic waves in oxidant release by living neutrophils.
    Kindzelskii AL; Petty HR
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9207-12. PubMed ID: 12082178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser-induced fluorescence detection.
    Nikcevic I; Piruska A; Wehmeyer KR; Seliskar CJ; Limbach PA; Heineman WR
    Electrophoresis; 2010 Aug; 31(16):2796-803. PubMed ID: 20737446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy.
    Lemasters JJ; Chacon E; Ohata H; Harper IS; Nieminen AL; Tesfai SA; Herman B
    Methods Enzymol; 1995; 260():428-44. PubMed ID: 8592465
    [No Abstract]   [Full Text] [Related]  

  • 5. Simultaneous analysis of intracellular pH and Ca2+ from cell populations.
    Martinez-Zaguilan R; Tompkins LS; Gillies RJ; Lynch RM
    Methods Mol Biol; 2006; 312():269-87. PubMed ID: 16422205
    [No Abstract]   [Full Text] [Related]  

  • 6. Computed tomography-based spectral imaging for fluorescence microscopy.
    Ford BK; Volin CE; Murphy SM; Lynch RM; Descour MR
    Biophys J; 2001 Feb; 80(2):986-93. PubMed ID: 11159465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton permeation through the myocardial gap junction.
    Zaniboni M; Rossini A; Swietach P; Banger N; Spitzer KW; Vaughan-Jones RD
    Circ Res; 2003 Oct; 93(8):726-35. PubMed ID: 12958146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting Mitochondrial pH with an Improved Algorithm for Calibration of the Ratiometric 5(6)-carboxy-SNARF-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH.
    Żurawik TM; Pomorski A; Belczyk-Ciesielska A; Goch G; Niedźwiedzka K; Kucharczyk R; Krężel A; Bal W
    PLoS One; 2016; 11(8):e0161353. PubMed ID: 27557123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu²+ in living cell.
    Liu WY; Li HY; Lv HS; Zhao BX; Miao JY
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():658-63. PubMed ID: 22579327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1.
    Wieder ED; Hang H; Fox MH
    Cytometry; 1993 Nov; 14(8):916-21. PubMed ID: 8287734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic microscopy analysis of the interior pH of individual phospholipid vesicles.
    Heider EC; Myers GA; Harris JM
    Anal Chem; 2011 Nov; 83(21):8230-8. PubMed ID: 21962221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic patterns (NAD(P)H) in rat basophilic leukemia (RBL-2H3) cells and human hepatocellular carcinoma (Hep G2) cells with autofluorescence imaging.
    Chen R; Chen JY; Zhou LW
    Ultrastruct Pathol; 2008; 32(5):193-8. PubMed ID: 18958792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.
    Dolz M; O'Connor JE; Lequerica JL
    Cytometry A; 2004 Oct; 61(2):99-104. PubMed ID: 15382148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH.
    Srivastava A; Krishnamoorthy G
    Anal Biochem; 1997 Jul; 249(2):140-6. PubMed ID: 9212865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectroscopy for revealing mechanisms in biology: Strengths and pitfalls.
    Krishnamoorthy G
    J Biosci; 2018 Jul; 43(3):555-567. PubMed ID: 30002272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rejection of transplanted hearts in patients evaluated by the component analysis of multi-wavelength NAD(P)H fluorescence lifetime spectroscopy.
    Chorvat D; Mateasik A; Cheng Y; Poirier N; Miró J; Dahdah NS; Chorvatova A
    J Biophotonics; 2010 Oct; 3(10-11):646-52. PubMed ID: 20635425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring pH of otitis media effusion in chinchillas using fluorescence spectroscopy.
    Magin RL; Oh DK; Zhang A; Webb AG; Thulin JD
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):1027-32. PubMed ID: 8582720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of intracellular pH.
    Boyer MJ; Hedley DW
    Methods Cell Biol; 1994; 41():135-48. PubMed ID: 7532259
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid microspectrofluorimetry for biochemical and metabolic studies in single living cells.
    Kohen E; Kohen C; Salmon JM; Bengtsson G; Thorell B
    Biochim Biophys Acta; 1974 Oct; 362(3):575-83. PubMed ID: 4137907
    [No Abstract]   [Full Text] [Related]  

  • 20. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme.
    Capone M; Scanlon D; Griffin J; Engel PC
    FEBS J; 2011 Jul; 278(14):2460-8. PubMed ID: 21564547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.