These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 11017332)
1. Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows. Nusse HE; Yorke JA Phys Rev Lett; 2000 Jan; 84(4):626-9. PubMed ID: 11017332 [TBL] [Abstract][Full Text] [Related]
2. Fluctuational transitions across different kinds of fractal basin boundaries. Silchenko AN; Beri S; Luchinsky DG; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046203. PubMed ID: 15903766 [TBL] [Abstract][Full Text] [Related]
3. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Liu X; Hong L; Jiang J Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621 [TBL] [Abstract][Full Text] [Related]
4. Fractal structures in the chaotic advection of passive scalars in leaky planar hydrodynamical flows. Viana RL; Mathias AC; Souza LC; Haerter P Chaos; 2024 May; 34(5):. PubMed ID: 38805322 [TBL] [Abstract][Full Text] [Related]
5. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems. Kobayashi MU; Saiki Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542 [TBL] [Abstract][Full Text] [Related]
7. Using heteroclinic orbits to quantify topological entropy in fluid flows. Sattari S; Chen Q; Mitchell KA Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190 [TBL] [Abstract][Full Text] [Related]
8. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
9. Catastrophic bifurcation from riddled to fractal basins. Lai YC; Andrade V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075 [TBL] [Abstract][Full Text] [Related]
10. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold. Dronov V; Ott E Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384 [TBL] [Abstract][Full Text] [Related]
11. Chaotic escape from an open vase-shaped cavity. II. Topological theory. Novick J; Delos JB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016206. PubMed ID: 22400642 [TBL] [Abstract][Full Text] [Related]
12. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy. Tanaka G; Sanjuán MA; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710 [TBL] [Abstract][Full Text] [Related]
13. Countable and uncountable boundaries in chaotic scattering. De Moura AP; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046214. PubMed ID: 12443306 [TBL] [Abstract][Full Text] [Related]
14. Fluctuational transitions through a fractal basin boundary. Silchenko AN; Beri S; Luchinsky DG; McClintock PV Phys Rev Lett; 2003 Oct; 91(17):174104. PubMed ID: 14611351 [TBL] [Abstract][Full Text] [Related]
15. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Grebogi C; Ott E; Yorke JA Science; 1987 Oct; 238(4827):632-8. PubMed ID: 17816542 [TBL] [Abstract][Full Text] [Related]
16. Scaling properties of saddle-node bifurcations on fractal basin boundaries. Breban R; Nusse HE; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066213. PubMed ID: 14754303 [TBL] [Abstract][Full Text] [Related]
17. Mechanism for the riddling transition in coupled chaotic systems. Kim SY; Lim W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026217. PubMed ID: 11308568 [TBL] [Abstract][Full Text] [Related]
18. Rough basin boundaries in high dimension: Can we classify them experimentally? Bódai T; Lucarini V Chaos; 2020 Oct; 30(10):103105. PubMed ID: 33138466 [TBL] [Abstract][Full Text] [Related]