These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11017509)

  • 1. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes.
    Milnera M; Kurti J; Hulman M; Kuzmany H
    Phys Rev Lett; 2000 Feb; 84(6):1324-7. PubMed ID: 11017509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional polymeric structures of single-wall carbon nanotubes.
    Lian CS; Wang JT
    J Chem Phys; 2014 May; 140(20):204709. PubMed ID: 24880313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles.
    Simpson JR; Roslyak O; Duque JG; Hároz EH; Crochet JJ; Telg H; Piryatinski A; Walker ARH; Doorn SK
    Nat Commun; 2018 Feb; 9(1):637. PubMed ID: 29434198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.
    Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of carbon nanotubes with ultrahigh curvature.
    Plank W; Pfeiffer R; Schaman C; Kuzmany H; Calvaresi M; Zerbetto F; Meyer J
    ACS Nano; 2010 Aug; 4(8):4515-22. PubMed ID: 20731434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of intercalated O2 from aligned carbon nanotubes: the breaking of intertube paths and exponential changes in resistance.
    Tsai HJ; Lin WY; Chin W; Tsai TY; Hsu WK
    Chemphyschem; 2015 Aug; 16(12):2625-9. PubMed ID: 26102519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio calculations of electron affinity and ionization potential of carbon nanotubes.
    Buonocore F; Trani F; Ninno D; Di Matteo A; Cantele G; Iadonisi G
    Nanotechnology; 2008 Jan; 19(2):025711. PubMed ID: 21817560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies.
    Leyton P; Gómez-Jeria JS; Sanchez-Cortes S; Domingo C; Campos-Vallette M
    J Phys Chem B; 2006 Apr; 110(13):6470-4. PubMed ID: 16570943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotope engineering of carbon nanotube systems.
    Simon F; Kramberger Ch; Pfeiffer R; Kuzmany H; Zólyomi V; Kürti J; Singer PM; Alloul H
    Phys Rev Lett; 2005 Jul; 95(1):017401. PubMed ID: 16090655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
    Cronin SB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus MS; Tinkham M
    Phys Rev Lett; 2004 Oct; 93(16):167401. PubMed ID: 15525030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel polygonized single-wall carbon nanotube bundles.
    López MJ; Rubio A; Alonso JA; Qin LC; Iijima S
    Phys Rev Lett; 2001 Apr; 86(14):3056-9. PubMed ID: 11290106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering.
    Jorio A; Saito R; Hafner JH; Lieber CM; Hunter M; McClure T; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2001 Feb; 86(6):1118-21. PubMed ID: 11178024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research developments of Raman scattering of carbon nanotubes].
    Wang Y; Cao X; Lan G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):180-4. PubMed ID: 12953482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.