These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11017550)

  • 1. Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals.
    Shenoy VB; Kukta RV; Phillips R
    Phys Rev Lett; 2000 Feb; 84(7):1491-4. PubMed ID: 11017550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous dislocation multiplication in FCC metals.
    de Koning M; Cai W; Bulatov VV
    Phys Rev Lett; 2003 Jul; 91(2):025503. PubMed ID: 12906487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic Deformation through Dislocation Saturation in Ultrasmall Pt Nanocrystals and Its in Situ Atomistic Mechanisms.
    Wang L; Teng J; Sha X; Zou J; Zhang Z; Han X
    Nano Lett; 2017 Aug; 17(8):4733-4739. PubMed ID: 28715223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dislocation multi-junctions and strain hardening.
    Bulatov VV; Hsiung LL; Tang M; Arsenlis A; Bartelt MC; Cai W; Florando JN; Hiratani M; Rhee M; Hommes G; Pierce TG; de la Rubia TD
    Nature; 2006 Apr; 440(7088):1174-8. PubMed ID: 16641992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of dislocation configurations in a [0 0 1] fcc single crystal by electron channeling contrast imaging in the SEM.
    Gutierrez-Urrutia I
    Microscopy (Oxf); 2017 Apr; 66(2):63-67. PubMed ID: 28423410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From dislocation junctions to forest hardening.
    Madec R; Devincre B; Kubin LP
    Phys Rev Lett; 2002 Dec; 89(25):255508. PubMed ID: 12484901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.
    Shang SL; Wang WY; Wang Y; Du Y; Zhang JX; Patel AD; Liu ZK
    J Phys Condens Matter; 2012 Apr; 24(15):155402. PubMed ID: 22436671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of dissociation of periodic dislocation dipoles in isotropic crystals.
    Zhou XW
    RSC Adv; 2020 Sep; 10(58):35062-35071. PubMed ID: 35515678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals.
    Zhang J; Zhang H; Ye H; Zheng Y
    Sci Rep; 2016 Mar; 6():22893. PubMed ID: 26961273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous slip in body-centred cubic metals.
    Caillard D; Bienvenu B; Clouet E
    Nature; 2022 Sep; 609(7929):936-941. PubMed ID: 36171385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dislocation Networks and the Microstructural Origin of Strain Hardening.
    Sills RB; Bertin N; Aghaei A; Cai W
    Phys Rev Lett; 2018 Aug; 121(8):085501. PubMed ID: 30192605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations.
    Rodríguez de la Fuente O; Zimmerman JA; González MA; de La Figuera J; Hamilton JC; Pai WW; Rojo JM
    Phys Rev Lett; 2002 Jan; 88(3):036101. PubMed ID: 11801073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nodal effects in dislocation mobility.
    Bulatov VV; Cai W
    Phys Rev Lett; 2002 Sep; 89(11):115501. PubMed ID: 12225147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals.
    Wang JW; Narayanan S; Huang JY; Zhang Z; Zhu T; Mao SX
    Nat Commun; 2013; 4():2340. PubMed ID: 23945977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dislocation cross-slip in nanocrystalline fcc metals.
    Bitzek E; Brandl C; Derlet PM; Van Swygenhoven H
    Phys Rev Lett; 2008 Jun; 100(23):235501. PubMed ID: 18643514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacking fault energy in concentrated alloys.
    Shih M; Miao J; Mills M; Ghazisaeidi M
    Nat Commun; 2021 Jun; 12(1):3590. PubMed ID: 34117239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Microplasticity in Small-Scale FCC Crystals via Dynamic Mechanical Analysis.
    Ni X; Papanikolaou S; Vajente G; Adhikari RX; Greer JR
    Phys Rev Lett; 2017 Apr; 118(15):155501. PubMed ID: 28452540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces.
    Alcalá J; Dalmau R; Franke O; Biener M; Biener J; Hodge A
    Phys Rev Lett; 2012 Aug; 109(7):075502. PubMed ID: 23006383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.