BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11018157)

  • 1. Cytochrome c oxidase assembly in primates is sensitive to small evolutionary variations in amino acid sequence.
    Barrientos A; Müller S; Dey R; Wienberg J; Moraes CT
    Mol Biol Evol; 2000 Oct; 17(10):1508-19. PubMed ID: 11018157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan.
    Bayona-Bafaluy MP; Müller S; Moraes CT
    Mol Biol Evol; 2005 Mar; 22(3):716-24. PubMed ID: 15574809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human-derived probe, p82H, hybridizes to the centromeres of gorilla, chimpanzee, and orangutan.
    Miller DA; Sharma V; Mitchell AR
    Chromosoma; 1988; 96(4):270-4. PubMed ID: 3133178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of distamycin A on gorilla-, chimpanzee- and orangutan lymphocyte cultures.
    Schmid M; Poppen A; Engel W
    Cytogenet Cell Genet; 1981; 30(4):211-21. PubMed ID: 7297124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panels of somatic cell hybrids specific for chimpanzee, gorilla, orangutan, and baboon.
    Marzella R; Carrozzo C; Chiarappa P; Miolla V; Rocchi M
    Cytogenet Genome Res; 2005; 108(1-3):223-8. PubMed ID: 15545734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex FISH probes for the subtelomeric regions of all human chromosomes: comparative hybridization of CEPH YACs to chromosomes of the Old World monkey Presbytis cristata and great apes.
    Kingsley K; Wirth J; van der Maarel S; Freier S; Ropers HH; Haaf T
    Cytogenet Cell Genet; 1997; 78(1):12-9. PubMed ID: 9345897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New aspects of chromosomal evolution in the gorilla and the orangutan.
    Weise A; Gross M; Schmidt S; Reichelt F; Claussen U; Liehr T
    Int J Mol Med; 2007 Mar; 19(3):437-43. PubMed ID: 17273792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subunit composition and function of mammalian cytochrome c oxidase.
    Kadenbach B; Hüttemann M
    Mitochondrion; 2015 Sep; 24():64-76. PubMed ID: 26190566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal and human-homologous repeated DNA distribution in the orangutan (Pongo pygmaeus). Comparison with distribution of these DNAs in the other species of the Hominidae.
    Gosden J; Lawrie S; Seuanez H
    Cytogenet Cell Genet; 1978; 21(1-2):1-10. PubMed ID: 417898
    [No Abstract]   [Full Text] [Related]  

  • 11. Hominoid phylogeny estimated by model selection using goodness of fit significance tests.
    Czelusniak J; Goodman M
    Mol Phylogenet Evol; 1995 Sep; 4(3):283-90. PubMed ID: 8845964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III.
    McKenzie M; Chiotis M; Pinkert CA; Trounce IA
    Mol Biol Evol; 2003 Jul; 20(7):1117-24. PubMed ID: 12777531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees.
    Nickerson E; Nelson DL
    Genomics; 1998 Jun; 50(3):368-72. PubMed ID: 9676431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids.
    Kenyon L; Moraes CT
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9131-5. PubMed ID: 9256447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular phylogenetics of the hominoid Y chromosome.
    Samonte RV; Conte RA; Verma RS
    J Hum Genet; 1998; 43(3):185-6. PubMed ID: 9747032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear DNA origin of cytochrome c oxidase deficiency in Leigh's syndrome: genetic evidence based on patient's-derived rho degrees transformants.
    Tiranti V; Munaro M; Sandonà D; Lamantea E; Rimoldi M; DiDonato S; Bisson R; Zeviani M
    Hum Mol Genet; 1995 Nov; 4(11):2017-23. PubMed ID: 8589677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force.
    Aledo JC; Valverde H; Ruíz-Camacho M; Morilla I; López FD
    Genome Biol Evol; 2014 Oct; 6(11):3064-76. PubMed ID: 25359921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No mitochondrial cytochrome oxidase (COX) gene mutations in 18 cases of COX deficiency.
    Parfait B; Percheron A; Chretien D; Rustin P; Munnich A; Rötig A
    Hum Genet; 1997 Dec; 101(2):247-50. PubMed ID: 9402980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal evolution of the great apes and man.
    Dutrillaux B
    J Reprod Fertil Suppl; 1980; Suppl 28():105-11. PubMed ID: 6934305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.