These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11018457)

  • 1. Theoretical study of convergent ultrasound hyperthermia for treating bone tumors.
    Lu BY; Yang RS; Lin WL; Cheng KS; Wang CY; Kuo TS
    Med Eng Phys; 2000 May; 22(4):253-63. PubMed ID: 11018457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatable domain and optimal frequency for brain tumors during ultrasound hyperthermia.
    Lin WL; Liauh CT; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):239-47. PubMed ID: 10656398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific absorption rate ratio patterns of cylindrical ultrasound transducers for breast tumors.
    Lin WL; Yen JY; Chen YY; Cheng KS; Shieh MJ
    Med Phys; 1998 Jun; 25(6):1041-8. PubMed ID: 9650195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia.
    Lin WL; Fan WC; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1329-36. PubMed ID: 10725647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia.
    Lin WL; Chen YY; Lin SY; Yen JY; Shieh MJ; Kuo TS
    Med Phys; 1999 Sep; 26(9):2007-16. PubMed ID: 10505892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of temperature elevation at muscle/bone interface during ultrasound hyperthermia.
    Lin WL; Liauh CT; Chen YY; Liu HC; Shieh MJ
    Med Phys; 2000 May; 27(5):1131-40. PubMed ID: 10841420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of applicator diameter on lesion size from high temperature interstitial ultrasound thermal therapy.
    Tyréus PD; Nau WH; Diederich CJ
    Med Phys; 2003 Jul; 30(7):1855-63. PubMed ID: 12906204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia.
    Lin WL; Yen JY; Chen YY; Jin KW; Shieh MJ
    Med Phys; 1999 May; 26(5):818-24. PubMed ID: 10360547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of nonlinear effects with focused ultrasound in tissues: an "acoustic bragg peak".
    Swindell W
    Ultrasound Med Biol; 1985; 11(1):121-30. PubMed ID: 4012895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound applicators with internal water-cooling for high-powered interstitial thermal therapy.
    Deardorff DL; Diederich CJ
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1356-65. PubMed ID: 11059170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing ultrasound focus distributions for hyperthermia.
    Lalonde RJ; Hunt JW
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):981-90. PubMed ID: 8582728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound applicators with integrated catheter-cooling for interstitial hyperthermia: theory and preliminary experiments.
    Diederich CJ
    Int J Hyperthermia; 1996; 12(2):279-97; discussion 299-300. PubMed ID: 8926395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.