These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 11018480)
1. Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone. Rosa SM; Antunes-Madeira MC; Matos MJ; Jurado AS; Madeira VM Biochim Biophys Acta; 2000 Sep; 1487(2-3):286-95. PubMed ID: 11018480 [TBL] [Abstract][Full Text] [Related]
2. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Reizer J; Grossowicz N; Barenholz Y Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029 [TBL] [Abstract][Full Text] [Related]
3. Effects of a lipophilic environmental pollutant (DDT) on the phospholipid and fatty acid contents of Bacillus stearothermophilus. Donato MM; Jurado AS; Antunes-Madeira MC; Madeira VM Arch Environ Contam Toxicol; 1997 Nov; 33(4):341-9. PubMed ID: 9419252 [TBL] [Abstract][Full Text] [Related]
4. Physical studies on membrane lipids of Bacillus stearothermophilus temperature and calcium effects. Jurado AS; Pinheiro TJ; Madeira VM Arch Biochem Biophys; 1991 Aug; 289(1):167-79. PubMed ID: 1898060 [TBL] [Abstract][Full Text] [Related]
5. Fluidity of bacterial membrane lipids monitored by intramolecular excimerization of 1.3-di(2-pyrenyl)propane. Jurado AS; Almeida LM; Madeira VM Biochem Biophys Res Commun; 1991 Apr; 176(1):356-63. PubMed ID: 2018528 [TBL] [Abstract][Full Text] [Related]
6. Membrane lipid composition of Bacillus stearothermophilus as affected by lipophilic environmental pollutants: an approach to membrane toxicity assessment. Donato MM; Jurado AS; Antunes-Madeira MC; Madeira VM Arch Environ Contam Toxicol; 2000 Aug; 39(2):145-53. PubMed ID: 10871416 [TBL] [Abstract][Full Text] [Related]
7. Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model. Rosa SM; Antunes-Madeira MC; Jurado AS; Madeira VV Appl Biochem Biotechnol; 2000 Jun; 87(3):165-75. PubMed ID: 10982227 [TBL] [Abstract][Full Text] [Related]
8. Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Haque MA; Russell NJ Microbiology (Reading); 2004 May; 150(Pt 5):1397-1404. PubMed ID: 15133101 [TBL] [Abstract][Full Text] [Related]
9. Lipid composition changes induced by tamoxifen in a bacterial model system. Luxo C; Jurado AS; Madeira VM Biochim Biophys Acta; 1998 Feb; 1369(1):71-84. PubMed ID: 9528675 [TBL] [Abstract][Full Text] [Related]
10. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. Gel-state disorder in the presence of methyl iso- and anteiso-branched-chain substituents. Macdonald PM; Sykes BD; McElhaney RN Biochemistry; 1985 May; 24(10):2412-9. PubMed ID: 4016065 [TBL] [Abstract][Full Text] [Related]
11. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis. Mathieu C; Motta C; Hartmann MA; Thonat C; Boyer N Biochim Biophys Acta; 1995 May; 1235(2):249-55. PubMed ID: 7756332 [TBL] [Abstract][Full Text] [Related]
12. Composition of polar lipid acyl chains of Bacillus stearothermophilus as affected by temperature and calcium. Martins LO; Jurado AS; Madeira VM Biochim Biophys Acta; 1990 Jun; 1045(1):17-20. PubMed ID: 2369582 [TBL] [Abstract][Full Text] [Related]
13. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Uttlová P; Pinkas D; Bechyňková O; Fišer R; Svobodová J; Seydlová G Biochim Biophys Acta; 2016 Dec; 1858(12):2965-2971. PubMed ID: 27620333 [TBL] [Abstract][Full Text] [Related]
14. Lipid and protein composition and thermotropic lipid phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii B. Silvius JR; Mak N; McElhaney RN Biochim Biophys Acta; 1980 Apr; 597(2):199-215. PubMed ID: 7370250 [TBL] [Abstract][Full Text] [Related]
15. The influence of saturated fatty acid modulation of bilayer physical state on cellular and membrane structure and function. Chester DW; Tourtellotte ME; Melchior DL; Romano AH Biochim Biophys Acta; 1986 Aug; 860(2):383-98. PubMed ID: 3741857 [TBL] [Abstract][Full Text] [Related]
16. Dietary menhaden and corn oils and the red blood cell membrane lipid composition and fluidity in hyper- and normocholesterolemic miniature swine. Berlin E; Bhathena SJ; McClure D; Peters RC J Nutr; 1998 Sep; 128(9):1421-8. PubMed ID: 9732300 [TBL] [Abstract][Full Text] [Related]
17. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Van Blitterswijk WJ; De Veer G; Krol JH; Emmelot P Biochim Biophys Acta; 1982 Jun; 688(2):495-504. PubMed ID: 7104337 [TBL] [Abstract][Full Text] [Related]
18. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Beranová J; Jemioła-Rzemińska M; Elhottová D; Strzałka K; Konopásek I Biochim Biophys Acta; 2008 Feb; 1778(2):445-53. PubMed ID: 18154726 [TBL] [Abstract][Full Text] [Related]
19. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. McElhaney RN; Souza KA Biochim Biophys Acta; 1976 Sep; 443(3):348-59. PubMed ID: 183821 [TBL] [Abstract][Full Text] [Related]
20. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]