These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11018956)

  • 1. Unification of perturbation theory, random matrix theory, and semiclassical considerations in the study of parametrically dependent eigenstates.
    Cohen D; Heller EJ
    Phys Rev Lett; 2000 Mar; 84(13):2841-4. PubMed ID: 11018956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric evolution for a deformed cavity.
    Cohen D; Barnett A; Heller EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046207. PubMed ID: 11308930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classical correspondence.
    Cohen D; Kottos T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036203. PubMed ID: 11308737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of random matrix theory to correctly describe quantum dynamics.
    Kottos T; Cohen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):065202. PubMed ID: 11736226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric evolution of eigenstates: beyond perturbation theory and semiclassics.
    Méndez-Bermúdez JA; Kottos T; Cohen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):027201. PubMed ID: 16196755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonperturbative and perturbative parts of energy eigenfunctions: a three-orbital schematic shell model.
    Wang WG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036219. PubMed ID: 11909224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual Coulomb interaction fluctuations in chaotic systems: the boundary, random plane waves, and semiclassical theory.
    Tomsovic S; Ullmo D; Bäcker A
    Phys Rev Lett; 2008 Apr; 100(16):164101. PubMed ID: 18518203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformations and dilations of chaotic billiards: dissipation rate, and quasiorthogonality of the boundary wave functions.
    Barnett A; Cohen D; Heller EJ
    Phys Rev Lett; 2000 Aug; 85(7):1412-5. PubMed ID: 10970517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum corrections to fidelity decay in chaotic systems.
    Gutkin B; Waltner D; Gutiérrez M; Kuipers J; Richter K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036222. PubMed ID: 20365847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistics of resonance states in open chaotic systems: a perturbative approach.
    Poli C; Savin DV; Legrand O; Mortessagne F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046203. PubMed ID: 19905411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal spectral correlations from the ballistic sigma model.
    Müller J; Micklitz T; Altland A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056204. PubMed ID: 18233736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbative and nonperturbative parts of eigenstates and local spectral density of states: the wigner-band random-matrix model.
    Wang Wg
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):952-5. PubMed ID: 11046349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring phase space localization of chaotic eigenstates via parametric variation.
    Cerruti NR; Lakshminarayan A; Lefebvre JH; Tomsovic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016208. PubMed ID: 11304336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.
    Cherman A; Dorigoni D; Dunne GV; Ünsal M
    Phys Rev Lett; 2014 Jan; 112(2):021601. PubMed ID: 24484001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories.
    Berkolaiko G; Kuipers J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation theory corrections to the two-particle reduced density matrix variational method.
    Juhasz T; Mazziotti DA
    J Chem Phys; 2004 Jul; 121(3):1201-5. PubMed ID: 15260661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiclassical spatial correlations in chaotic wave functions.
    Toscano F; Lewenkopf CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036201. PubMed ID: 11909206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-mechanical nonperturbative response of driven chaotic mesoscopic systems.
    Cohen D; Kottos T
    Phys Rev Lett; 2000 Dec; 85(23):4839-43. PubMed ID: 11102131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusive-ballistic crossover in 1D quantum walks.
    Wójcik DK; Dorfman JR
    Phys Rev Lett; 2003 Jun; 90(23):230602. PubMed ID: 12857245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact distribution of spacing ratios for random and localized states in quantum chaotic systems.
    Tekur SH; Kumar S; Santhanam MS
    Phys Rev E; 2018 Jun; 97(6-1):062212. PubMed ID: 30011473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.