These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations). Oktem H; Pearson R; Egiazarian K Chaos; 2003 Dec; 13(4):1167-74. PubMed ID: 14604408 [TBL] [Abstract][Full Text] [Related]
44. Stable and unstable attractors in Boolean networks. Klemm K; Bornholdt S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):055101. PubMed ID: 16383673 [TBL] [Abstract][Full Text] [Related]
45. Spatial prisoner's dilemma game with volunteering in Newman-Watts small-world networks. Wu ZX; Xu XJ; Chen Y; Wang YH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037103. PubMed ID: 15903637 [TBL] [Abstract][Full Text] [Related]
46. Noisy attractors and ergodic sets in models of gene regulatory networks. Ribeiro AS; Kauffman SA J Theor Biol; 2007 Aug; 247(4):743-55. PubMed ID: 17543998 [TBL] [Abstract][Full Text] [Related]
47. Mean-field Boolean network model of a signal transduction network. Kochi N; Matache MT Biosystems; 2012; 108(1-3):14-27. PubMed ID: 22212351 [TBL] [Abstract][Full Text] [Related]
48. The Role of Weak Interactions in Biological Systems: the Dual Dynamics Model. Volkert LG; Conrad M J Theor Biol; 1998 Jul; 193(2):287-306. PubMed ID: 9735261 [TBL] [Abstract][Full Text] [Related]
49. Evolution of developmental canalization in networks of competing boolean nodes. Bassler KE; Lee C; Lee Y Phys Rev Lett; 2004 Jul; 93(3):038101. PubMed ID: 15323874 [TBL] [Abstract][Full Text] [Related]
50. Properties of a mixed ESS candidate in continuous strategy sets. Yaniv O J Theor Biol; 2006 Feb; 238(4):795-804. PubMed ID: 16098988 [TBL] [Abstract][Full Text] [Related]
51. Influence and dynamic behavior in random boolean networks. Seshadhri C; Vorobeychik Y; Mayo JR; Armstrong RC; Ruthruff JR Phys Rev Lett; 2011 Sep; 107(10):108701. PubMed ID: 21981539 [TBL] [Abstract][Full Text] [Related]
52. Coevolution of dynamical states and interactions in dynamic networks. Zimmermann MG; EguĂluz VM; San Miguel M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):065102. PubMed ID: 15244650 [TBL] [Abstract][Full Text] [Related]
53. Attractor analysis of asynchronous Boolean models of signal transduction networks. Saadatpour A; Albert I; Albert R J Theor Biol; 2010 Oct; 266(4):641-56. PubMed ID: 20659480 [TBL] [Abstract][Full Text] [Related]
54. Controlling herding in minority game systems. Zhang JQ; Huang ZG; Wu ZX; Su R; Lai YC Sci Rep; 2016 Feb; 6():20925. PubMed ID: 26883398 [TBL] [Abstract][Full Text] [Related]
55. Emergence of grouping in multi-resource minority game dynamics. Huang ZG; Zhang JQ; Dong JQ; Huang L; Lai YC Sci Rep; 2012; 2():703. PubMed ID: 23050087 [TBL] [Abstract][Full Text] [Related]
56. Adaptive coevolutionary networks: a review. Gross T; Blasius B J R Soc Interface; 2008 Mar; 5(20):259-71. PubMed ID: 17971320 [TBL] [Abstract][Full Text] [Related]
57. Robustness as an evolutionary principle. Bornholdt S; Sneppen K Proc Biol Sci; 2000 Nov; 267(1459):2281-6. PubMed ID: 11413644 [TBL] [Abstract][Full Text] [Related]
58. Self-organized networks of competing boolean agents. Paczuski M; Bassler KE; Corral A Phys Rev Lett; 2000 Apr; 84(14):3185-8. PubMed ID: 11019043 [TBL] [Abstract][Full Text] [Related]
59. Adaptation and survivors in a random Boolean network. Nakamura I Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046128. PubMed ID: 12005947 [TBL] [Abstract][Full Text] [Related]
60. Self-organized Boolean game on networks. Zhou T; Wang BH; Zhou PL; Yang CX; Liu J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046139. PubMed ID: 16383500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]