These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11019222)

  • 1. Self-organization, localization of shear bands, and aging in loose granular materials.
    Torok J; Krishnamurthy S; Kertesz J; Roux S
    Phys Rev Lett; 2000 Apr; 84(17):3851-4. PubMed ID: 11019222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shearing of loose granular materials: a statistical mesoscopic model.
    Török J; Krishnamurthy S; Kertész J; Roux S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021303. PubMed ID: 12636667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical packing in granular shear bands.
    Fazekas S; Török J; Kertész J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011302. PubMed ID: 17358140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear band formation in granular media as a variational problem.
    Unger T; Török J; Kertész J; Wolf DE
    Phys Rev Lett; 2004 May; 92(21):214301. PubMed ID: 15245284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear zones in granular mixtures of hard and soft particles with high and low friction.
    Singh AP; Angelidakis V; Pöschel T; Roy S
    Soft Matter; 2024 Apr; 20(14):3118-3130. PubMed ID: 38451109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite width of quasistatic shear bands.
    Jagla EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026105. PubMed ID: 18850895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologies of three-dimensional shear bands in granular media.
    Fazekas S; Török J; Kertész J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031303. PubMed ID: 17025619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcations to diversify geometrical patterns of shear bands on granular material.
    Ikeda K; Yamakawa Y; Desrues J; Murota K
    Phys Rev Lett; 2008 May; 100(19):198001. PubMed ID: 18518489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow relaxation due to optimization and restructuring: solution on a hierarchical lattice.
    Török J; Krishnamurthy S; Kertész J; Roux S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026108. PubMed ID: 12636749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear profiles and localization in simulations of granular materials.
    Aharonov E; Sparks D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051302. PubMed ID: 12059546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear zones in granular materials: optimization in a self-organized random potential.
    Török J; Unger T; Kertész J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011305. PubMed ID: 17358143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of Shear Bands in Confined Granular Systems: Singularity of the
    Viallon-Galinier L; Combe G; Richefeu V; Picardi Faria Atman A
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation and shear band formation by slow compression of brittle porous media.
    Pál G; Jánosi Z; Kun F; Main IG
    Phys Rev E; 2016 Nov; 94(5-1):053003. PubMed ID: 27967008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain localization in dry sheared granular materials: A compactivity-based approach.
    Ma X; Elbanna A
    Phys Rev E; 2018 Aug; 98(2-1):022906. PubMed ID: 30253526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization.
    Estrada N; Lizcano A; Taboada A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011303. PubMed ID: 20866607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Measurement of Density in a Shear Band of Metallic Glass Monitored Along its Propagation Direction.
    Schmidt V; Rösner H; Peterlechner M; Wilde G; Voyles PM
    Phys Rev Lett; 2015 Jul; 115(3):035501. PubMed ID: 26230801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain localization in a shear transformation zone model for amorphous solids.
    Manning ML; Langer JS; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056106. PubMed ID: 18233717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signatures of granular microstructure in dense shear flows.
    Mueth DM; Debregeas GF; Karczmar GS; Eng PJ; Nagel SR; Jaeger HM
    Nature; 2000 Jul; 406(6794):385-9. PubMed ID: 10935630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot spots in an athermal system.
    Amon A; Nguyen VB; Bruand A; Crassous J; Clément E
    Phys Rev Lett; 2012 Mar; 108(13):135502. PubMed ID: 22540713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of cooperativity in plasticity of soft glassy materials.
    Le Bouil A; Amon A; McNamara S; Crassous J
    Phys Rev Lett; 2014 Jun; 112(24):246001. PubMed ID: 24996095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.